CONCEPT: DISSOCIATION CONSTANT AND pKa ●In general chemistry, we used pH to measure _____ • In organic chemistry, we use _____ to measure the tendency for a molecule to _____ □ Strong acids have a _____ dissociation constant (they _____ dissociate in aqueous solution) □ Weak acids have a _____ dissociation constant (they _____ dissociate in aqueous solution) • p = $K_a = \left(\frac{[H+][A-]}{[HA]}\right)$ (dissociation constant) Therefore, the ____ Ka, the ____ the pKa 0 **EXAMPLE:** Calculate the pK_a's of the following acids and indicate which is the stronger acid. Dissociation Constant = 1.75 x 10⁻⁵ Acetic Acid Ammonium Dissociation Constant = 5.8 x 10⁻¹⁰