CONCEPT: MERRIFIELD SOLID-PHASE PEPTIDE SYNTHESIS

- An automated method that uses a *polystyrene* bead in synthesizing peptide chains.
 - □ Polystyrene: a _____ created from ethenylbenzene (styrene).

Merrifield Solid-Phase Peptide Overview	
P-CH ₂ CI + O(CH ₃) ₃	P-CH ₂ -0 R O(CH ₃) ₃
Chloromethylated Protected Amino Acid Polystyrene	

- Takes place in ____ required steps:
 - **0** Amino Acid Protection: A _____ reaction between a carboxylic acid and N terminus end of amino acid.
 - 1 S_N2 Reaction: The _____ amino acid reacts with a chloromethylated polystyrene bead.
 - 2 Hydrolysis Reaction: _____ of N terminus end of the amino acid.
 - 3a Peptide Bond Formation: Another protected amino acid attaches to ___ terminus end of the amino acid.
 - **3b** Hydrolysis Reaction: ______ of N terminus end of the amino acid.
 - 4 Peptide Chain Release: The peptide chain is released upon treatment with _____.

CONCEPT: MERRIFIELD SOLID-PHASE PEPTIDE SYNTHESIS

EXAMPLE: Identify the steps needed to prepare the following dipeptide Val-Met based on a Merrifield synthesis.

PRACTICE: Provide the peptide chain structure produced from the following sequence of reagents. (**Note:** Show the ionic forms for the N and C terminus ends).

CONCEPT: MERRIFIELD SOLID-PHASE PEPTIDE SYNTHESIS

PRACTICE: Starting from polystyrene, provide the synthetic pathway in forming the tripeptide Gly-Leu-Ser using the Merrifield peptide synthesis method.