CONCEPT: MERRIFIELD SOLID-PHASE PEPTIDE SYNTHESIS - An automated method that uses a *polystyrene* bead in synthesizing peptide chains. - □ Polystyrene: a _____ created from ethenylbenzene (styrene). | Merrifield Solid-Phase Peptide Overview | | |---|---| | P-CH ₂ CI + O(CH ₃) ₃ | P-CH ₂ -0 R O(CH ₃) ₃ | | Chloromethylated Protected Amino Acid Polystyrene | | - Takes place in ____ required steps: - **0** Amino Acid Protection: A _____ reaction between a carboxylic acid and N terminus end of amino acid. - 1 S_N2 Reaction: The _____ amino acid reacts with a chloromethylated polystyrene bead. - 2 Hydrolysis Reaction: _____ of N terminus end of the amino acid. - 3a Peptide Bond Formation: Another protected amino acid attaches to ___ terminus end of the amino acid. - **3b** Hydrolysis Reaction: ______ of N terminus end of the amino acid. - 4 Peptide Chain Release: The peptide chain is released upon treatment with _____. ## **CONCEPT:** MERRIFIELD SOLID-PHASE PEPTIDE SYNTHESIS **EXAMPLE**: Identify the steps needed to prepare the following dipeptide Val-Met based on a Merrifield synthesis. **PRACTICE:** Provide the peptide chain structure produced from the following sequence of reagents. (**Note:** Show the ionic forms for the N and C terminus ends). ## **CONCEPT:** MERRIFIELD SOLID-PHASE PEPTIDE SYNTHESIS **PRACTICE:** Starting from polystyrene, provide the synthetic pathway in forming the tripeptide Gly-Leu-Ser using the Merrifield peptide synthesis method.