CONCEPT: SUZUKI REACTION

- The Suzuki coupling reaction involves the coupling between a carbon halide and an organoboron compound (RBY₂).
 - □ The reaction creates conjugated compounds composed of alkenes, _____ or ____ compounds.

Cross-Coupling Reaction			
R ₁ X	+ R ₂ —C -	$M-L_n \rightarrow R_1 - R_2$	+ CX
Carbon Halide	Coupling Agent	Coupling Product	Byproduct

- ☐ The R₁ group of the carbon halide is represented by a(n) *vinyl* or *aryl* group.
- □ The R₂ group of the organoborane is represented by a(n) *vinyl, aryl* + _____ group.
- \Box The **C** group = BY₂ with the Y group represented by a(n) ____ (boronic acid), ____ (boronic ester) or alkyl group.
- □ The **X** group of the carbon halide is represented by a Cl, Br, I or OTf group.
- When creating conjugated products, the reaction is observed to be _____ with retention of configurations.

EXAMPLE: Determine the product from the following Suzuki Coupling Reaction.

Coupling Mechanism

1) **Oxidative Addition**: Involves the addition of the carbon halide to the transition metal complex.

$$R_1-X$$
 $\xrightarrow{PdL_2}$

2) **Transmetallation**: The R_2 group transfers from the organoborane to the Pd metal complex.

$$R_1$$
- P_0 - L + R_2 - BY_2 \longrightarrow X

3) **Reductive Elimination**: This step forms the coupling product.

CONCEPT: SUZUKI REACTION

PRACTICE: Determine the product from the following Suzuki Reaction.

PRACTICE: Predict the structures of organoborane compound **A** and coupling product **B** in the following reaction sequence.

PRACTICE: Beginning from 1-pentyne, synthesize the following compound via a Suzuki Coupling Reaction.