CONCEPT: ENTHALPY

□ Bond dissociation energies describe the strength of chemical bonds. They can be determined experimentally.

• Enthalpy ΔH° is the sum of bond dissociation energies for the reaction.

____ = ____ bonds = *Exothermic* ____ = ___ bonds = *Endothermic*

Bond Dissociation Energies (ΔH°) of Common Bonds

Bond	kJ/mol
H — OH	498
H—H	436
H — Br	368
H—I	297

Bond	kJ/mol
H_3C-H	436
$H_3C - OH$	381
$H_3C - Br$	293
H ₃ C — I	234

Bond	kJ/mol
$H_3C - CH_3$	436
HO — OH	213
Br — Br	192
1—1	151

EXAMPLE: Predict the sign and magnitude of ΔH^o for the following reaction. Give your answer in units of kilojoules per mole, and identify whether the reaction is expected to be endothermic or exothermic.

PRACTICE: Predict the sign and magnitude of ΔH^o for the following reaction. Give your answer in units of kilojoules per mole, and identify whether the reaction is expected to be endothermic or exothermic.