
CONCEPT: ANIONIC POLYMERIZATION

- Alkenes with electron-_____ groups undergo anionic polymerization.
 - □ A strong _____ (e.g. NaNH₂ or ____) initiates the reaction.

Anionic Polymerization Mechanism

• The reaction mechanism has 3 steps.

- STEP 1: The strong nucleophile attacks the double bond similar to ______ addition.
 - □ The electron-withdrawing group stabilizes the _____ charge.

STEP 2: The monomer anion reacts with a monomer molecule and forms a new anion through head-to-tail addition.

- STEP 3: Unlike radical and cationic polymerization, anionic polymerization does not self-terminate.
 - □ **Living Polymers:** The chain remains _____ after consuming all monomers.
 - $\hfill\Box$ The chain can be terminated by adding a proton _____ (e.g. ____).

CONCEPT: ANIONIC POLYMERIZATION

EXAMPLE: A catalytic amount of a strong base (NaOH) can catalyze the polymerization of 4-vinylpyridine. Draw the structure of the anion (from the initiation step) and the repeating unit of the polymer.

PRACTICE: Which one of the following compounds would undergo anionic polymerization at the fastest rate?

- a)

- b)

- c)
- OCH

d) CN

PRACTICE: A student was preparing nitroethene from the reaction of nitromethane with formaldehyde in an acidic solution. In the workup step, they accidentally added a small excess of NaOH, resulting in a white coating on the inside wall of the reaction flask. What is the structure of the compound in the white coating?