CONCEPT: OCTET RULE

Atoms are most stable when they achieve the number of electrons necessary to reach a **Noble Gas Configuration**.

☐ The tendency for atoms to lose or gain electrons in order to reach this configuration is known as the _____ rule

We can use MO theory to prove why atoms are most stable (and will not form bonds) in the Noble gas configuration

EXAMPLE: He₂ LCAO

Atoms can satisfy their octet through forming chemical bonds or by possessing lone pairs. These are called octet electrons.

- □ First-row elements (H, He, Li) will prefer to possess _____ octet electrons
- □ Second-row elements (C, N, O, F) will prefer to possess _____ octet electrons
 - Atoms smaller than Carbon will possess less than 8 electrons: (Be) _____ and (B) _____
- □ Third-row elements may form *expanded octets* that can hold (P) _____ and (S) _____

CONCEPT: OCTET RULE

PRACTICE: Analyze the following molecules. Indicate ALL atoms that are in violation of the octet rule.

