CONCEPT: FUKUYAMA COUPLING

- The Fukuyama Coupling reaction involves the coupling between a thioester and an organozinc halide with a Pd catalyst.
 - ☐ The reaction creates a ______ product.

Cross-Coupling Reaction			
R ₁ X	+ R ₂ —C —	$R_1 \rightarrow R_1 \rightarrow R_2 + R_2$	CX
Carbon Halide	Coupling Agent	Coupling Product	Byproduct

- □ The R₁ group of the thioester is represented by a(n) *vinyl* or *aryl* group.
- □ The R₂ group of the organozinc halide is represented by a(n) _____ group.
- □ The **C** group = _____.

EXAMPLE: Determine the product from the following Fukuyama Coupling Reaction.

SEt + Et
$$-ZnI$$
 $\xrightarrow{PdBr_2(PPh_3)_2}$ Toulene

Coupling Mechanism

- Unlike the Grignard Reagent, the organozinc halide stops at the ketone instead of proceeding to a _____ alcohol.
 - 1) Oxidative Addition: Involves the addition of the thioester to the Pd complex.

2) Transmetallation: The R2 group of the organozinc compound transfers from Zn to the Pd complex.

Pd—SEt +
$$R_2$$
—ZnI

3) Reductive Elimination: This step forms the coupling product.

CONCEPT: FUKUYAMA COUPLING

PRACTICE: Determine the product from the following Fukuyama Reaction.

PRACTICE: Determine compounds **A**, **B**, and **C** from the following reaction sequence.