
CONCEPT: HECK REACTION

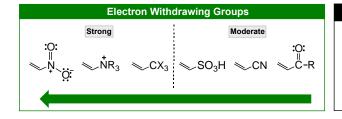
- The Heck Reaction involves the coupling between a carbon halide and an alkene in the presence of a Pd catalyst.
 - □ The R group of the carbon halide is substituted for a(n) _____ hydrogen of an alkene.

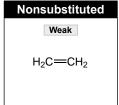
Cross-Coupling Reaction		
R ₁ —X Carbon Halide	+ R ₂ —C M-L _n R ₁ —R ₂ + CX Coupling Agent Coupling Product Byproduct	

- □ The R₁ group of the carbon halide is represented by a(n) *vinyl, aryl* + _____ group.
- \Box The \mathbb{R}_2 group is represented by a(n) _____ group.
- \Box The **C** group = .
- □ The **X** leaving group of the carbon halide is represented by a Cl, Br, I or OTf group.
- □ The Base = _____, ____ or _____.

Regioselectivity

• The reaction is highly *regioselective*, with the R₁ group going to the _____ substituted position of the alkene.


Stereoselectivity


• If an E or Z configuration is possible at the alkene, the reaction is highly stereoselective, often giving _____ as the major.

EXAMPLE: Determine the product from the following Heck Reaction.

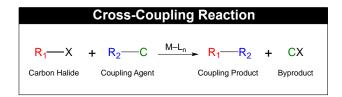
The Alkene

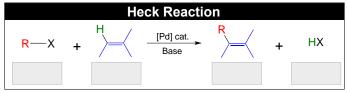
- The reactivity of the alkene (R₂) _____ with increasing substitution.
 - □ Highest yields are obtained for _____ and ____ with electron withdrawing groups.

EXAMPLE: Rank the following alkenes in order of increasing reactivity towards the Heck Reaction.

CONCEPT: HECK REACTION

PRACTICE: Determine the product from the following Heck Reaction.


PRACTICE: Predict the product formed from the following intramolecular Heck reaction.


$$Pd(OAc)_2$$
, PPh_3
 Et_3N

PRACTICE: Using ethyl-2-butenoate as your starting material, prepare the following compound by a Heck reaction.

CONCEPT: HECK REACTION MECHANISM

• The Heck Reaction mechanism occurs via a catalytic cycle that is comprised of ______ intermediates.

Coupling Mechanism

1) Oxidative Addition: Involves the addition of the carbon halide to the transition metal complex.

$$\begin{array}{ccc} R-X & \xrightarrow{PdL_2} & \xrightarrow{Pd-L} \end{array}$$

2) **Syn Addition**: The resulting complex reacts with the alkene and adds R₁ and Pd across the pi bond on the same side.

3a) Reductive Elimination 1: New complex undergoes a C-C bond rotation followed by syn elimination to give the alkene.

3b) Reductive Elimination 2: The base (_____ or ____) removes HX to regenerate the palladium catalyst.

EXAMPLE: A Heck reaction between (Z)-3-hexene and bromoethene creates both (Z)-3-ethyl-1,3-hexadiene and (E)-3-ethyl-1,4-hexadiene. Illustrate how both products can be formed.

+ Br
$$\frac{\text{Pd}(\text{OAc})_2 \text{ , PPh}_3}{\text{Et}_3\text{N}}$$
 + $\frac{\text{Pd}(\text{OAc})_2 \text{ , PPh}_3}{\text{Et}_3\text{N}}$ + $\frac{\text{Pd}(\text{OAc})_2 \text{ ,$