
CONCEPT: OVERVIEW OF CROSS-COUPLING GENERAL REACTIONS

- These reactions involve synthetic transformations that combine a(n) _____ agent with a(n) _____
 - □ 2 driving forces: Formation of highly _____ products + the catalyst following the ____ or ___ electron rule.

- The R₁ group in the reaction can be an ______, _____, _____, or ______.
 - □ The carbon halide being used is dependent on the type of coupling reaction.

• The Coupling Agent (C group) in the reaction is also dependent on the type of coupling reaction.

EXAMPLE: The Heck reaction is a well-known coupling reaction that involves the combining of a carbon halide with an alkene. Base on the example provided determine a possible coupling product.

PRACTICE: In the Stille reaction, an organostannane compound reacts with a carbon halide in order to form a new carbon-carbon bond. What would be the final product from the following Stille coupling reaction?

$$\rightarrow$$
 SnBu₃ Pd(Ph₃)₄

CONCEPT: CROSS-COUPLING REACTION MECHANISMS

- The detailed mechanisms for many of these reactions are still debated, but it is accepted that all of them follow 3 stages:
 - ☐ These stages include (1) oxidative addition, (2) transmetallation and (3) reductive elimination.

1. Oxidative Addition

- A transition metal complex, M—L_n, reacts with a carbon halide by inserting itself into the R₁—X bond.
 - □ This step can happen by a variety of mechanisms, but a _____ (one-step) process is most common.

Oxidative Addition
R_1 — $X + :M—L_n —$

- □ Both of the new bonds formed behave like _____type ligands, which causes the electron count to _____ b
- □ Recall, this part of the cycle is driven by the _____ or ____ electron rule.

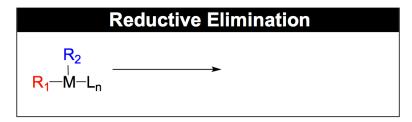
EXAMPLE: Determine the new palladium complex that forms during this oxidative addition step.

PRACTICE: Determine the new cadmium complex that forms during this oxidative addition step.

CONCEPT: CROSS-COUPLING REACTION MECHANISMS

2. Transmetallation

• The R2 group of the coupling agent is transferred to the metal complex, while at the same time the _____ group leaves.


□ The term "transmetallation" generally involves the interchanging of ligands between two metals or metalloids.

EXAMPLE: Determine the product(s) formed in the following reaction sequence.

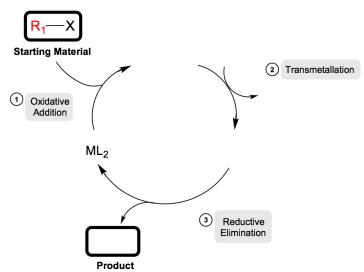
CONCEPT: CROSS-COUPLING REACTION MECHANISMS

3. Reductive Elimination

- Both the _____ and ____ leave the metal complex and form a sigma bond between one another to end the reaction.
 - ☐ This step is basically the opposite of the oxidative addition step.
 - □ It is not always a typical elimination that generates a pi bond.

Stereochemistry

• Typically, reductive elimination generally results in the ______ of stereochemistry.


EXAMPLE: Determine the final product in the following reaction.

16 e⁻ complex

- □ Reduction is seen as the gaining of electrons and a _____ in an element's oxidation number.
- □ When the two _____-type ligands are lost the oxidation state of the metal decreases by 2.
- $\ \square$ At the same time, the formation of a conjugated product allows for the unstable catalyst to be regenerated.

Mechanism Cycle

• These 3 stages together help to form a _____ cycle to show product formation and catalyst regeneration.

