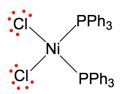

CONCEPT: ELECTRON COUNTING

- In main-group chemistry, we use the _____ rule as an indicator of reactivity.
 - □ If an element possessed less than 8 electrons around it then it would accept an electron pair.

- Electron count is also important in our understanding of the mechanistic basis of transition metal-catalyzed reactions.
 - □ To determine the electron count for a transition-metal complex we employ the following equation:

Formula

Electron Count = Valence of Metal M - Q_M + (X-Type Ligands) + 2 (L-Type Ligands)


□ Valence of Metal M: _____ + ____ electrons.

Ni (Z = 28)
$$Ar 4s^2 3d^8$$

 \square Q_M = the _____ of the transition metal complex.

$$[Zn(H_2O)_4]^{2+}$$
 $Q_M =$ $Pd(NH_3)_2Cl_2$ $Q_M =$

- □ X-Type Ligands donate _____ electron(s) to the metal cation of the complex molecule or ion.
- □ L-Type Ligands donate _____ electron(s) and doesn't change the formal charge of the metal cation.

EXAMPLE: What is the electron count of the complex ion $[Co(CN)_6]^{3-}$?

PRACTICE: What is the electron count of the complex ion [Cr(NH₃)₄Cl₂]⁺?