Allylic Position

- **Recall:** The allylic position is the C atom adjacent to a _____ bond.
 - ☐ Allylic compounds react differently than alkenes.

- 1) S_N1/E1 reactions: allylic compounds react _____ than their alkyl counterparts.
- 2) S_N2/E2 reactions: allylic halides react faster than alkyl halides.
- 3) Radical reactions: _____ takes place at the allylic position.
- 4) Allylic Anions: rapidly _____ due to resonance.

1) S_N1/E1 Reactions of Allylic Compounds

- **Recall:** Step ____ is the rate-determining step in S_N1 and E1 reactions.
- Allylic carbocations form faster than similarly substituted alkyl carbocations due to their ______.
 - □ Alkyl C+: stabilized by _____. □ Allylic C+: Stabilized by _____.

Carbocation Formation			
Reaction			Relative Rate
CI		(H)	
CI	→	(H)	

EXAMPLE: Arrange the following alkyl halides in decreasing order of their relative reaction rates under S_N1 conditions.

a) ||| > |V > | > ||

b) I > II > IV > III

c) IV > I > II > III

d) | > | | > | | > | | |

PRACTICE: Which of the following alcohols will undergo acid-catalyzed dehydration at the fastest rate?

a) OF

b) OH

c) OF

d) OF

PRACTICE: What are the substitution products of the following reaction?

2) E2 Reactions Involving Allylic Protons

• Allylic anions are _____ acidic than alkyl protons because of a more stable _____ base.

- Enhanced acidity of the allylic protons results in a ____ ratio of elimination products.
 - □ Alkene products of such eliminations are stabilized by _____.

EXAMPLE: Provide the mechanism and draw the structure of the major elimination product for the following reaction.

PRACTICE: Which of the following compounds will undergo E2 elimination at the fastest rate?

- a) I
- b) II
- c) Both will proceed at equal rates.

3) Radical Reactions of Allylic Compounds

• Recall: Halogens add to double bonds through a _____ ion intermediate.

• The reaction site changes in the presence of a *radical initiator*, and substitution products are formed.

Radical initiators can be Δ, hν, or _____.

EXAMPLE: Draw the structure of the major product for the following reaction.

PRACTICE: Draw the structures of the compounds A and B for the following synthesis.

A
$$\xrightarrow{NBS}$$
 B $\xrightarrow{EtO^-}$ EtOH, Δ

4) Allylic Anion Rearrangements

• Allylic anions are more stable than alkyl anions due to resonance.

• Resonance in allylic Grignard reagents can result in two _____ anions in equilibrium.

- □ **Recall:** alkene stability is determined by _____ rule.
- Each of the two isomers produces a _____ product with an electrophile.

 $\textbf{EXAMPLE:} \ \, \textbf{Draw products for the following reaction}.$

Allylic Oxidation

- A weak oxidation where _____/CH₂Cl₂ _____ oxidizes the allylic –OH group.
 - □ The alkene double bond remains _____.

EXAMPLE: Draw the product of the following oxidation reaction.

$$\begin{array}{c|c}
 & MnO_2 \\
\hline
 & CH_2CI_2
\end{array}$$

PRACTICE: Draw the structures of products A and B for the given reactions.

$$A \qquad \begin{array}{c} PCC \\ \hline CH_2Cl_2 \end{array} \qquad HO$$

HO
$$OH$$
 MnO_2 CH_2CI_2 B

b)

d)

A: