CONCEPT: MONOSACCHARIDES – MODERN KILIANI-FISCHER SYNTHESIS

Aldose aldehydes are susceptible to the same *nucleophilic addition* reactions that we learned in carbonyl chemistry

- When exposed to ______, aldoses can reversibly transform into cyanohydrins.
 - □ The cyano group can then be reduced and hydrolyzed to form a new, *chain-lengthened* aldehyde
 - □ Synthesis can be repeated multiple times, however a mixture of C2 epimers are created at every cycle

Modern vs. Classical Method:

The original Kiliani-Fischer synthesis required two additional steps after cyanohydrin addition, and resulted in poor yields

• An improved reducing agent was developed _____ which was "poisoned" to form *imines* instead of *amines*

□ In aqueous solution, imines rapidly hydrolyze into carbonyls. Same mechanism as *imine hydrolysis*.

PRACTICE: Predict the product(s) for the following reaction. Provide the mechanism of the imine hydrolysis step if required.

HO-CH₂ OH
$$\begin{array}{c}
 & 1. \text{ HCN} \\
\hline
 & 2. \text{ H}_2, \text{ Pd/BaSO}_4, \text{ H}_2\text{O}
\end{array}$$

$$\beta\text{-D-xylofuranose}$$