#### **CONCEPT: ACIDITY OF PHENOLS**

Phenols are substantially more acidic than typical alcohols due to the \_\_\_\_\_\_ effect.

• Recall, the more we can stabilize the conjugate base, the more acidic a compound will be.

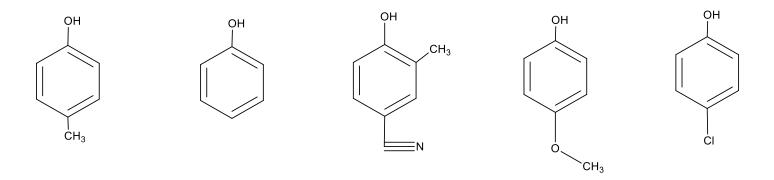
## **Donating and Withdrawing Groups:**

## **EXAMPLE:** Predict which of the following would be the most acidic phenol.

#### O,P-Directors vs. Meta-Directors

The \_\_\_\_\_ position has a *much lessor effect* on acidity than the \_\_\_\_\_ and \_\_\_\_ positions.

• This is due to the resonance structures that are able to be produced by different positions


acidic

**EXAMPLE:** Predict which of the following would be the most acidic phenol.

## **EXAMPLE:** Predict which of the following would be the most acidic phenol.

# **EXAMPLE:** Predict which of the following would be the most acidic phenol.

<u>PRACTICE:</u> Rank the following phenols in order of increasing acidity.

