
### **Intro to Edman Degradation**

- Edman degradation is a \_\_\_\_\_ method to sequence a peptide from the \_\_\_-terminal.
- Ph—N=C=S
  \_\_\_\_\_ reagent

Phenyl isothiocyanate (PITC)

- □ Uses phenyl isothiocyanate (\_\_\_\_\_) as the main reagent.
- Each degradation cycle (\_\_ reactions) cleaves \_\_ amino acid residue from the peptide chain.
  - 1 Nucleophilic Addition: PITC reacts with N-terminal \_\_\_\_ group to produce a \_\_\_\_\_ derivative.
  - 2 Cyclization & Cleavage: Thiourea derivative cyclizes into a \_\_\_\_\_\_ derivative.
    - N-terminal amino acid is cleaved from the peptide chain (\_\_\_\_\_).
  - (3) Rearrangement: Thioazolinone derivative rearranges to a more stable phenylthiohydantoin (\_\_\_\_\_) derivative.



N-terminal amino acid is identified via \_\_\_\_\_ characterization of the \_\_\_\_ derivative.

**EXAMPLE:** Complete the structure of the PTH derivative formed by Edman degradation of the following tetrapeptide:

Tyr-Pro-Trp-Phe

## 1 Nucleophilic Addition

• Reaction of the -NH<sub>2</sub> with PITC is analogous to nucleophilic \_\_\_\_\_\_ to a carbonyl group.

Step 1
Nucleophilic Attack

Step 2
Proton Transfer

**STEP 1: –NH**<sub>2</sub> attacks the \_\_\_\_ atom of PITC.

**STEP 2:** A H<sup>+</sup> is transferred from –NH<sub>2</sub> to the PITC \_\_\_\_ atom.

**EXAMPLE:** Which of the following is an unlikely step in the nucleophilic addition of a peptide to PITC?

- a) Amino group of N-terminal amino acid attacks the C atom of PITC.
- b) Formation of a resonance-stabilized ion after nucleophilic attack.
- c) Proton transfer leading to the formation of a thiourea derivative.
- d) Nucleophilic attack of the S atom of PITC on the carbonyl group of the N-terminal amino acid.

# 2 Cyclization & Cleavage

• Formation of the thioazolinone derivative takes place via nucleophilic acyl \_\_\_\_\_ mechanism.

Step 1
Protonation

Step 2
Nucleophilic Attack

Step 3

Proton Transfer

Step 4
Leaving Group

Step 5

Deprotonation

**STEP 1:** The carbonyl \_\_\_\_ of the N-terminal amino acid is protonated.

STEP 2: An \_\_\_\_\_molecular nucleophilic attack forms a cyclic tetrahedral intermediate.

STEP 3: A H+ transfer makes the peptide chain a better \_\_\_\_\_ group.

STEP 4: The –OH group pushes its electrons to reform the carbonyl and kick out the \_\_\_\_\_ chain.

 $\begin{array}{c} \vdots \\ \text{Ph-N-C} \\ N \\ R \end{array} + \begin{array}{c} \vdots \\ N \\ R \\ \end{array} + \begin{array}{c} \vdots \\ N \\ R \\ \end{array} + \begin{array}{c} \vdots \\ N \\ R \\ \end{array}$ 

**STEP 5:** Carbonyl \_\_\_\_ is deprotonated to give a thiozolinone derivative.

**EXAMPLE:** Which of the following statements about thioazolinone formation in Edman degradation is incorrect?

- a) Thiazolinone forms through an intramolecular nucleophilic attack.
- b) The tetrahedral intermediate cannot convert into thiazolinone without a proton transfer step.
- c) The N-terminal amino acid is cleaved from the peptide chain before ring formation takes place.
- d) The S atom from PITC, instead of the N atom, attacks the carbonyl group because it is more nucleophilic.

# 3 Rearrangement

Rearrangement of thiazolinone to thiohydantoin takes place in \_\_\_\_ steps.

STEP 1: The thioazolinone ring opens via an acid-catalyzed NAS \_\_\_\_\_\_ reaction.

STEP 2: Tautomerization of the hydrolysis product takes place.

STEP 3: Rotation takes place along the C-N bond.

STEP 4: Ring closure takes place through an \_\_\_\_\_-catalyzed intramolecular \_\_\_\_\_ reaction.

Ph 
$$\stackrel{\circ}{NH}$$
  $\stackrel{\circ}{NH}$   $\stackrel{\circ}{N$ 

| <b>EXAMPLE:</b> Acetylation at the N-terminal is a commonly seen posttranslational modification. Explain why the following peptide cannot be sequenced using Edman degradation. (Hint: draw the thiazolinone structure.) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          |
| PRACTICE: Bradykinin is an important nonapeptide with many biological functions. A student performed a series of                                                                                                         |
| experiments to determine its structure and obtained the following results:                                                                                                                                               |
| 1. Complete hydrolysis of the peptide yielded 2 Arg, 2 Phe, 3 Pro, Gly, and Ser.                                                                                                                                         |
| 2. Edman degradation produced PTH-Arg.                                                                                                                                                                                   |
| 3. Treatment with carboxypeptidase A did not produce any fragments.                                                                                                                                                      |
| 4. Treatment with chymotrypsin produced Arg, a pentapeptide, and a tripeptide with composition Pro, Ser, Phe.                                                                                                            |
| 5. A tripeptide produced during partial acidic hydrolysis was confirmed to be Pro-Gly-Phe.                                                                                                                               |
|                                                                                                                                                                                                                          |
| <del></del>                                                                                                                                                                                                              |
|                                                                                                                                                                                                                          |
| Edman: PTH-Arg                                                                                                                                                                                                           |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
| Carboxypeptidase A = No fragments                                                                                                                                                                                        |
| <u></u>                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |
| Chymotrypsin = pentapeptide, tripeptide (Pro, Ser, and Phe), Arg                                                                                                                                                         |
| <del></del>                                                                                                                                                                                                              |
| <del></del>                                                                                                                                                                                                              |
| Tripeptide Pro- <u>Gly-Phe</u>                                                                                                                                                                                           |
| Tripopulao F To <u>Oty</u> <u>F He</u>                                                                                                                                                                                   |

| <b>PRACTICE:</b> Use the following information to determine the structure of | a synthetic heptapeptide: |
|------------------------------------------------------------------------------|---------------------------|
| 1. Complete hydrolysis of the peptide yields 2 Thr, Cys, Met, Trp, Lys, a    | and Phe.                  |

- 2. Edman degradation produces PTH-Phe.
- 3. Treatment with carboxypeptidase A cleaves off Thr.
- 4. Cleavage with cyanogen bromide produces a dipeptide and a pentapeptide

| 5. Treatment with trypsin produces a tetrapeptide and a tripeptide Thr-Cys-Thr. |
|---------------------------------------------------------------------------------|
| <del>-</del>                                                                    |
| Edman: PTH-Phe                                                                  |
| Carboxypeptidase A = Thr                                                        |
| Cyanogen bromide = dipeptide and a tripeptide                                   |
| or <u>-</u>                                                                     |
| Trypsin = tetrapeptide and tripeptide (Thr-Cys-Thr)                             |
|                                                                                 |