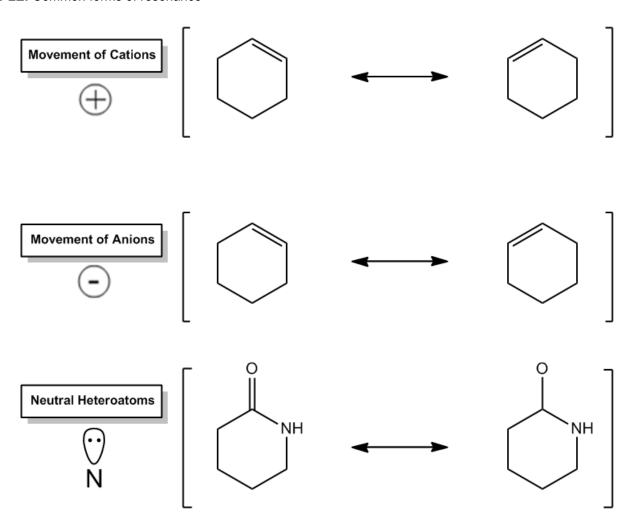
CONCEPT: RESONANCE STRUCTURES

Resonance theory is used to represent all the different ways that the same molecule can distribute its electrons.

• Atoms _____ move! The only thing that moves is _____

• _____ of these contributing structures will be a realistic representation of what the molecule actually looks like

Rules:

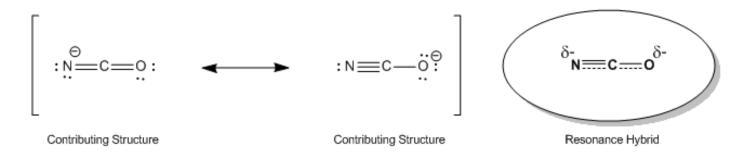

Use curved arrows to represent electron movement

• Use double-sided arrows and ______ to link related structures to each other

• Arrows always travel from region of ____ electron density to ____ electron density

The net charge of each structure must be _______

EXAMPLE: Common forms of resonance

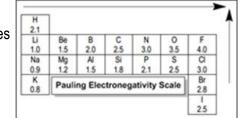

PRACTICE: Draw all of the *contributing structures* for the following molecules

CONCEPT: RESONANCE HYBRIDS

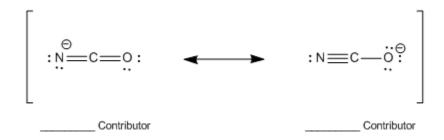
The resonance hybrid represents the mathematical combination of all the *contributing structures*

• It indicates where the resonating electrons within the molecule are _______ to reside

EXAMPLE: Isocyanate Resonance Hybrid



CONCEPT: MAJOR CONTRIBUTORS


Often one of the resonance structures will be more _____ so it will contribute to the _____ more than the others.

Major contributors will often have the following characteristics:

- _____ structures are almost always more stable than charged ones
 - ☐ If possible, every atom should fill its _____
 - ☐ Use electronegativity trends to determine best placement of charges

EXAMPLE: Isocyanate major contributor

<u>PRACTICE:</u> Draw all of the *contributing structures* for the following molecules. Label the major contributor if applicable and draw the resonance hybrid.

а.

Iminium Cation