Glycolysis Reactions

- Glycolysis is a sequence of ____ biochemical reactions.
 - □ Reactions ___ to ___ split 1 glucose molecule into 2 glyceraldehyde 3-phosphate (G3P) molecules.
 - □ Reactions ___ to ___ convert G3P to _____ and produce high-energy molecules (ATP and NADH).
- **1** Phosphorylation: C__ OH of α -glucose attacks the __-phosphorous of ATP.

- **2 Isomerization:** α -Glucose 6-phosphate isomerizes to α -fructose 6-phosphate.
 - □ Isomerization takes place through an _____ intermediate.

- **3** Phosphorylation: α-Fructose 6-phosphate undergoes phosphorylation to yield β -fructose 1,6-bisphosphate.
 - 3a) Mutarotation occurs _____ phosphorylation. 3b □ Phosphorylation occurs at C_ OH.

- 4 Bond Cleavage: Fructose 1,6-bisphophate undergoes a _____ reaction.
 - (4a) An iminium intermediate is formed first.

4b) C__-C__ bond of the intermediate is cleaved.

4c) and 4d) Tautomerization and ______ of the enamine produces dihydroxyacetone phosphate (DHAP).

- 5 Isomerization: Dihydroxyacetone phosphate (DHAP) is isomerized to glyceraldehyde-3-phosphate (G3P).
 - □ Occurs via _____ mechanism.

EXAMPLE: Identify the mechanism through which DHAP is converted into G3P.

- a) Phosphorylation
- b) Enediol mechanism
- c) E1cB elimination
- d) Dehydration

PRACTICE: Classify each one of the following reactions as phosphorylation (P), isomerization (I), or neither (N).
a) Conversion of glucose into glucose-6-phosphate.
b) Conversion of glucose-6-phosphate into fructose-6-phosphate.
c) Conversion of DHAP into G3P.
d) Cleavage of fructose-1,6-bisphosphate into DHAP and G3P.
PRACTICE: Which one of the following compound pairs is produced by cleavage of fructose-1,6-bisphosphate?
a) Dihydroxyacetone phosphate and glyceraldehyde-3-phosphate

- b) glyceraldehyde-3-phosphate and glyceraldehyde-2-phosphate
- c) Glyceraldehyde-3-phosphate and CO₂
- d) Dihydroxyacetone phosphate and 3-phosphoglycerate

PRACTICE: Identify which carbon atoms of fructose 1,6-bisphosphate become carbonyl groups in dihydroxyacetone phosphate and glyceraldehyde 3-phosphate when it undergoes a retro aldol reaction in step 4 of glycolysis.

- a) C3 and C4
- b) C2 and C5
- c) C3 and C5
- d) C2 and C4

6 Oxidation × 2: G3P undergoes oxidation to produce 1,3-bisphosphoglycerate (1,3_____).

6a A hemithioacetal is formed first.

6b NAD+ _____ produces a thioester.

6c The thioester undergoes an _____ reaction with the phosphate ion.

7 Phosphate Transfer × 2: 1,3BPG produces 3-phosphoglycerate (3PG) by losing a _____ group.

□ Occurs via ____ mechanism.

- 8 Isomerization × 2: 3-phosphoglycerate (3PG) undergoes isomerization to yield 2-phosphoglycerate (2PG).
 - □ Occurs via __ ___ reactions.

- 9 Dehydration × 2: 2-phosphoglycerate (2PG) undergoes dehydration to produce phosphoenolpyruvate (PEP).
 - (9a) Mg²⁺ ions are required to reduce __ charges.
- 9b Dehydration occurs via _____ mechanism.

- 10 Phosphate Transfer × 2: PEP yields pyruvate by losing its _____ group.
 - NAS reaction with ADP produces enolpyruvate.
- **10b** Tautomerization produces pyruvate.

EXAMPLE: Which one of the fol	llowing alveolvsis	reactions will p	oroduce an ATP	molecule?
--------------------------------------	--------------------	------------------	----------------	-----------

- a) 3-Phosphoglycerate to 2-phosphoglycerate
- b) Glyceraldehyde-3-phosphate to 1,3-Bisphosphoglycerate
- c) Glucose to glucose-6-phosphate
- d) 1,3-Bisphosphoglycerate to 3-phosphoglycerate

PRACTICE: Identify the mechanism for each of the following reactions as NAS, E1cB, or S_N2.

- a) _____ Dehydration of 2-phosphoglycerate to produce phosphoenolpyruvate.
- b) ____ Conversion of 1,3-bisphosphoglycerate into 3-phosphoglycerate.
- c) ____ Conversion of glucose into glucose-6-phosphate.
- d) ____ Conversion of 3-phosphoglycerate into 2-phosphoglycerate.

PRACTICE: If the P atom in 3-phosphoglycerate is labelled with phosphorous-32, where does the label end up after it is isomerized to 2-phosphoglycerate in step 8 of glycolysis?

- a) Ends up as the phosphate group in 2-phosphoglycerate.
- b) Ends up as free phosphate group because it is exchanged with a free phosphate from the solution outside the enzyme.
- c) On the histidine residue of the enzyme that catalyzes the reaction.
- d) Ends up as the y-phosphate group of ATP that's produced in the reaction.