CONCEPT: THE CLUTCH PREP AMINO ACID BREAKDOWN | Nonpolar Side Chains: | Notes: | Polar Side Chains: | Notes: | |---|--|-----------------------|---| | O | Glycine
Gly (G) | 0 | Cysteine
Cys (C) | | У ОН | COOH = 2.34
NH ₃ * = 9.60 | OH
NH ₂ | COOH = 1.96
NH ₃ ⁺ =10.28 | | ŇH ₂ | | - O | Serine
Ser (S) | | OH | Alanine Ala (A) COOH = 2.34 | NH ₂ OH | COOH = 2.21
NH ₃ * = 9.15 | | NH ₂ | NH ₃ ⁺ = 9.69 | O
 | Threonine
Thr (T) | | , Î | Valine
Val (V)
COOH = 2.32 | OH
NH ₂ | COOH = 2.09
NH ₃ ⁺ = 9.10 | | NH ₂ | NH ₃ * = 9.62 | Ů | Tyrosine
Tyr (Y) | | 0 | Leucine
Leu (L) | · NH ₂ | COOH = 2.20
NH _S * = 9.11 | | NH ₂ | COOH = 2.36
NH ₃ * = 9.60 | OH | Asparagine
Asn (N)
COOH = 2.02 | | 0 | Isoleucine | NH ₂ | NH ₃ * = 8.80 | | OH NH ₂ | Ile (I)
COOH = 2.36
NH ₃ * = 9.60 | OH | Glutamine
Gln (Q)
COOH = 2.17 | | | ₹ | NH ₂ | NH ₃ * = 9.13 | | O. | Proline
Pro (P) | Acidic Side Chains: | Notes: Aspartic Acid | | L | COOH = 1.99 | , Ĭ | Asp (D) | | NH OH | NH ₃ * = 10.60 | NH ₂ OH | COOH = 1.88
NH ₃ ⁺ = 9.60 | | O | Methionine
Met (M) | <u> </u> | Glutamic Acid
Glu (E) | | NH ₂ OH | COOH = 2.28
NH ₃ ⁺ = 9.21 | NH ₂ OH | COOH = 2.19
NH ₃ * = 9.67 | | | ¹ Discontinuo | Basic Side Chains: | Notes: | | | Phenylalanine
Phe (F)
COOH = 1.83 | OH | Lysine
Lys (K)
COOH = 2.18 | | NH ₂ OH | NH ₃ * = 9.13 | ÑH₂
○ | NH ₃ + = 8.95
Histadine | | 0 | Tryptophan Trp (W) | OH NH ₂ | His (H)
COOH = 1.82
NH ₃ * = 9.17 | | ОН | COOH = 2.83
NH ₃ ⁺ = 9.39 | OH | Arginine
Arg (R) | | NH ₂ = universally accepted as essential amino acids (F) | VT HL KLMW) Aliphatic = GAVLIP Other | NH ₂ | COOH = 2.17
NH ₃ + = 9.04
asic = KHR | # **CONCEPT:** THE 20 AMINO ACIDS: BLANK WORKSHEET | Nonpolar Side Chains: | Notes: | Polar Side Chains: | Notes: | |-----------------------|---|---------------------|--| | | COOH = 2.34
NH ₃ * = 9.60 | | COOH = 1.96
NH ₃ ⁺ =10.28 | | | COOH = 2.34
NH ₃ ⁺ = 9.69 | | COOH = 2.21
NH ₃ * = 9.15 | | | COOH = 2.32
NH ₃ ⁺ = 9.62 | | COOH = 2.09
NH ₃ ⁺ = 9.10 | | | 1
1
1
1
1
1 | | COOH = 2.20
NH ₃ ⁺ = 9.11 | | | COOH = 2.36
NH ₃ ⁺ = 9.60 | | COOH = 2.02
NH ₃ ⁺ = 8.80 | | | COOH = 2.36
NH ₃ ⁺ = 9.60 | | COOH = 2.17
NH ₃ * = 9.13 | | | COOH = 1.99
NH ₃ ⁺ = 10.60 | Acidic Side Chains: | Notes:
COOH = 1.88
NH ₃ ⁺ = 9.60 | | | COOH = 2.28
NH ₃ ⁺ = 9.21 | Davis Side Chaine | COOH = 2.19
NH ₃ * = 9.67 | | | 1 | Basic Side Chains: | Notes: | | | COOH = 1.83
NH ₃ ⁺ = 9.13 | | COOH = 2.18
NH ₃ ⁺ = 8.95 | | | COOH = 2.83
NH ₃ * = 9.39 | | COOH = 1.82
NH ₃ * = 9.17 | | | | | COOH = 2.17
NH ₃ ⁺ = 9.04 | #### **CONCEPT:** THE 20 AMINO ACIDS: NON-POLAR SIDECHAINS **PRACTICE 1:** Non-Polar Sidechains - Fill in the missing sidechains on the following target tripeptide. **PRACTICE 2:** Non-Polar Sidechains - Fill in the missing sidechains on the following target tripeptide. N-terminus $$H_2N$$ $=$ 1 N $=$ 1 PRACTICE 3: Non-Polar Sidechains - Provide the complete structure of the tripeptide P-F-W ## **CONCEPT:** THE 20 AMINO ACIDS: POLAR SIDECHAINS **PRACTICE 1:** Polar Sidechains - Provide the Fischer Projection of Glutamine (Q) PRACTICE 2: Polar Sidechains - Provide the complete structure of the dipeptide Asn-Cys PRACTICE 3: Polar Sidechains - Fill in the missing sidechains on the following target oligopeptide. ## **CONCEPT:** THE 20 AMINO ACIDS: ACIDIC/BASIC SIDECHAINS PRACTICE 1: Acidic/Basic Sidechains - Provide the Fischer Projection of Amino Acid (H) PRACTICE 2: Acidic/Basic Sidechains - Fill in the missing sidechains on the following target oligopeptide. **PRACTICE 3:** Acidic/Basic Sidechains - Provide the complete structure of the oligopeptide V-I-D-Y. Based on your knowledge of hydrophobicity, which side of the peptide is more likely bury itself within the protein?