CONCEPT: THE CLUTCH PREP AMINO ACID BREAKDOWN

Nonpolar Side Chains:	Notes:	Polar Side Chains:	Notes:
O	Glycine Gly (G)	0	Cysteine Cys (C)
У ОН	COOH = 2.34 NH ₃ * = 9.60	OH NH ₂	COOH = 1.96 NH ₃ ⁺ =10.28
ŇH ₂		- O	Serine Ser (S)
OH	Alanine Ala (A) COOH = 2.34	NH ₂ OH	COOH = 2.21 NH ₃ * = 9.15
NH ₂	NH ₃ ⁺ = 9.69	O 	Threonine Thr (T)
, Î	Valine Val (V) COOH = 2.32	OH NH ₂	COOH = 2.09 NH ₃ ⁺ = 9.10
NH ₂	NH ₃ * = 9.62	Ů	Tyrosine Tyr (Y)
0	Leucine Leu (L)	· NH ₂	COOH = 2.20 NH _S * = 9.11
NH ₂	COOH = 2.36 NH ₃ * = 9.60	OH	Asparagine Asn (N) COOH = 2.02
0	Isoleucine	NH ₂	NH ₃ * = 8.80
OH NH ₂	Ile (I) COOH = 2.36 NH ₃ * = 9.60	OH	Glutamine Gln (Q) COOH = 2.17
	₹	NH ₂	NH ₃ * = 9.13
O.	Proline Pro (P)	Acidic Side Chains:	Notes: Aspartic Acid
L	COOH = 1.99	, Ĭ	Asp (D)
NH OH	NH ₃ * = 10.60	NH ₂ OH	COOH = 1.88 NH ₃ ⁺ = 9.60
O	Methionine Met (M)	<u> </u>	Glutamic Acid Glu (E)
NH ₂ OH	COOH = 2.28 NH ₃ ⁺ = 9.21	NH ₂ OH	COOH = 2.19 NH ₃ * = 9.67
	¹ Discontinuo	Basic Side Chains:	Notes:
	Phenylalanine Phe (F) COOH = 1.83	OH	Lysine Lys (K) COOH = 2.18
NH ₂ OH	NH ₃ * = 9.13	ÑH₂ ○	NH ₃ + = 8.95 Histadine
0	Tryptophan Trp (W)	OH NH ₂	His (H) COOH = 1.82 NH ₃ * = 9.17
ОН	COOH = 2.83 NH ₃ ⁺ = 9.39	OH	Arginine Arg (R)
NH ₂ = universally accepted as essential amino acids (F)	VT HL KLMW) Aliphatic = GAVLIP Other	NH ₂	COOH = 2.17 NH ₃ + = 9.04 asic = KHR

CONCEPT: THE 20 AMINO ACIDS: BLANK WORKSHEET

Nonpolar Side Chains:	Notes:	Polar Side Chains:	Notes:
	COOH = 2.34 NH ₃ * = 9.60		COOH = 1.96 NH ₃ ⁺ =10.28
	COOH = 2.34 NH ₃ ⁺ = 9.69		COOH = 2.21 NH ₃ * = 9.15
	COOH = 2.32 NH ₃ ⁺ = 9.62		COOH = 2.09 NH ₃ ⁺ = 9.10
	1 1 1 1 1 1		COOH = 2.20 NH ₃ ⁺ = 9.11
	COOH = 2.36 NH ₃ ⁺ = 9.60		COOH = 2.02 NH ₃ ⁺ = 8.80
	COOH = 2.36 NH ₃ ⁺ = 9.60		COOH = 2.17 NH ₃ * = 9.13
	COOH = 1.99 NH ₃ ⁺ = 10.60	Acidic Side Chains:	Notes: COOH = 1.88 NH ₃ ⁺ = 9.60
	COOH = 2.28 NH ₃ ⁺ = 9.21	Davis Side Chaine	COOH = 2.19 NH ₃ * = 9.67
	1	Basic Side Chains:	Notes:
	COOH = 1.83 NH ₃ ⁺ = 9.13		COOH = 2.18 NH ₃ ⁺ = 8.95
	COOH = 2.83 NH ₃ * = 9.39		COOH = 1.82 NH ₃ * = 9.17
			COOH = 2.17 NH ₃ ⁺ = 9.04

CONCEPT: THE 20 AMINO ACIDS: NON-POLAR SIDECHAINS

PRACTICE 1: Non-Polar Sidechains - Fill in the missing sidechains on the following target tripeptide.

PRACTICE 2: Non-Polar Sidechains - Fill in the missing sidechains on the following target tripeptide.

N-terminus
$$H_2N$$
 $=$ 1 N $=$ 1

PRACTICE 3: Non-Polar Sidechains - Provide the complete structure of the tripeptide P-F-W

CONCEPT: THE 20 AMINO ACIDS: POLAR SIDECHAINS

PRACTICE 1: Polar Sidechains - Provide the Fischer Projection of Glutamine (Q)

PRACTICE 2: Polar Sidechains - Provide the complete structure of the dipeptide Asn-Cys

PRACTICE 3: Polar Sidechains - Fill in the missing sidechains on the following target oligopeptide.

CONCEPT: THE 20 AMINO ACIDS: ACIDIC/BASIC SIDECHAINS

PRACTICE 1: Acidic/Basic Sidechains - Provide the Fischer Projection of Amino Acid (H)

PRACTICE 2: Acidic/Basic Sidechains - Fill in the missing sidechains on the following target oligopeptide.

PRACTICE 3: Acidic/Basic Sidechains - Provide the complete structure of the oligopeptide V-I-D-Y. Based on your knowledge of hydrophobicity, which side of the peptide is more likely bury itself within the protein?