CONCEPT: ¹H NMR – PROTON RELATIONSHIPS

Hydrogens attached to the same carbon actually do have different relationships based on their chirality.

☐ The **Q-Test** is used to determine the specific type of chirality of each hydrogen.

a. Homotopic Protons

Q-Test **DOES NOT** yield new chiral center

- Protons are *always homotopic* and are considered _____ (They share a signal)
- In general, the three hydrogens on -CH₃ groups will always be homotopic

b. Enantiotopic Protons

Q-Test **DOES** yield new chiral center

• No original chiral centers = protons are still ______ (They share a signal)

c. Diastereotopic Protons

Q-Test **DOES** yield new chiral center

• <u>1+ original chiral centers</u> = protons are now ______ (Each proton gets its own signal)

EXAMPLE: How many signals will each molecule possess in ¹H NMR?

<u>PRACTICE:</u> Identify the indicated set of protons as unrelated, homotopic, enantiotopic, or diastereotopic.

PRACTICE: Identify the indicated set of protons as unrelated, homotopic, enantiotopic, or diastereotopic.

PRACTICE: Identify the indicated set of protons as unrelated, homotopic, enantiotopic, or diastereotopic.

