CONCEPT: REACTION MECHANISM: STABILITY AND REACTIVITY

The currency of organic chemistry is ______

- Stability and *reactivity* generally have an ______ relationship.
- The 4 common indicators of reactivity:

EXAMPLE: Identify which of the following molecules would be expected to be reactive.

d.

- Reactive
 - ☐ Nu⁻

- □ Reactive
 - ☐ Nu⁻
 - ∏ E⁺

- □ Reactive
 - ☐ Nu⁻ □ E⁺

- - ☐ Nu⁻
- ∏ E⁺

f.

g.

- □ Reactive
 - ☐ Nu⁻
 - ∏ E⁺

- - Reactive ☐ Nu⁻
 - ∏ E⁺

- - □ Reactive
- - □ Reactive ☐ Nu⁻
 - ∏ E[†]

We can categorize almost all reactive molecules into two massive subtypes. These will display similar behaviors.

- Negatively charged species are known as _____
- Positively charged species are known as

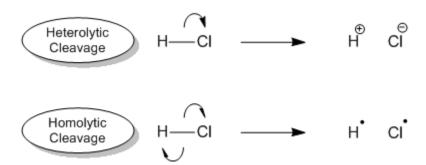
The side of the dipole with the bonding preference can be used to predict nucleophilicity or electrophilicity

EXAMPLE: Identify which of the above molecules are *nucleophilic* or *electrophilic*

CONCEPT: REACTION MECHANISM: ELECTRON MOVEMENTS

Reactive molecules share electrons to become more stable. _____ are used to show which direction they are going.

• Arrows always move from regions of _____ electron density to _____ electron density


• By that logic, _____ must *always* attack _____

• Each attacking arrow represents ____ electrons being shared. Replace that arrow with a new ____ - ___

EXAMPLE: Determine the initial direction of electron movement by drawing the *first* arrow of each mechanism:

□ Bond breaking is sometimes also required in mechanisms, but **only** when it is required to preserve octets.

There are two ways to break chemical bonds:

EXAMPLE: Identify which of the above reactions require bond breaking and/or more arrows to satisfy all octets