CONCEPT: REACTION MECHANISM: STABILITY AND REACTIVITY The currency of organic chemistry is ______ - Stability and *reactivity* generally have an ______ relationship. - The 4 common indicators of reactivity: **EXAMPLE:** Identify which of the following molecules would be expected to be reactive. d. - Reactive - ☐ Nu⁻ - □ Reactive - ☐ Nu⁻ - ∏ E⁺ - □ Reactive - ☐ Nu⁻ □ E⁺ - - ☐ Nu⁻ - ∏ E⁺ f. g. - □ Reactive - ☐ Nu⁻ - ∏ E⁺ - - Reactive ☐ Nu⁻ - ∏ E⁺ - - □ Reactive - - □ Reactive ☐ Nu⁻ - ∏ E[†] We can categorize almost all reactive molecules into two massive subtypes. These will display similar behaviors. - Negatively charged species are known as _____ - Positively charged species are known as The side of the dipole with the bonding preference can be used to predict nucleophilicity or electrophilicity **EXAMPLE**: Identify which of the above molecules are *nucleophilic* or *electrophilic* ## **CONCEPT:** REACTION MECHANISM: ELECTRON MOVEMENTS Reactive molecules share electrons to become more stable. _____ are used to show which direction they are going. • Arrows always move from regions of _____ electron density to _____ electron density • By that logic, _____ must *always* attack _____ • Each attacking arrow represents ____ electrons being shared. Replace that arrow with a new ____ - ___ **EXAMPLE:** Determine the initial direction of electron movement by drawing the *first* arrow of each mechanism: □ Bond breaking is sometimes also required in mechanisms, but **only** when it is required to preserve octets. There are two ways to break chemical bonds: **EXAMPLE**: Identify which of the above reactions require bond breaking and/or more arrows to satisfy all octets