CONCEPT: PHOTOCHEMICAL CYCLOADDITION REACTIONS

• Pericyclic reactions in which $\underline{\hspace{1cm}}$ π -bonds are destroyed after a $\underline{\hspace{1cm}}$ -activated cyclic mechanism

- In cycloaddition, HOMO_A must fill LUMO_B.
 - □ According to FMOT, bonding interaction is **strongest** when orbital symmetry and energy match closely.
 - \Box Light excites ground-state electrons to a _____ energy state ($\psi \rightarrow \psi^*$). HOMO / LUMO orbitals change.

Cycloadditions Summary:

• Assuming only **suprafacial** interactions (antrafacial not possible on small rings):

Total π–electrons		s Activator	ψ-orbital Difference
	4n	Photochemical	Odd
	4n + 2	Thermal	Even

PRACTICE:

a. Use FMOT to predict the mechanism and products for the following cycloaddition. If no product is favored, write "symmetry-disallowed" in place of the product.

 $2\pi + 2\pi$ cycloaddition (thymine dimerization)

Thymine (T)

b. Use the cycloaddition summary rules to verify that you have come to the correct conclusion.