CONCEPT: PHOTOCHEMICAL CYCLOADDITION REACTIONS • Pericyclic reactions in which $\underline{\hspace{1cm}}$ π -bonds are destroyed after a $\underline{\hspace{1cm}}$ -activated cyclic mechanism - In cycloaddition, HOMO_A must fill LUMO_B. - □ According to FMOT, bonding interaction is **strongest** when orbital symmetry and energy match closely. - \Box Light excites ground-state electrons to a _____ energy state ($\psi \rightarrow \psi^*$). HOMO / LUMO orbitals change. ## **Cycloadditions Summary**: • Assuming only **suprafacial** interactions (antrafacial not possible on small rings): | Total
π–electrons | | s Activator | ψ-orbital
Difference | |----------------------|--------|---------------|-------------------------| | | 4n | Photochemical | Odd | | | 4n + 2 | Thermal | Even | ## PRACTICE: a. Use FMOT to predict the mechanism and products for the following cycloaddition. If no product is favored, write "symmetry-disallowed" in place of the product. $2\pi + 2\pi$ cycloaddition (thymine dimerization) Thymine (T) b. Use the cycloaddition summary rules to verify that you have come to the correct conclusion.