- Benzylic positions are _____ due to stable reaction intermediates. - 1) S_N1/E1: ______ formation. - 2) S_N2/E2: benzylic ______. - 3) Oxidation of benzylic _____. # 1) S_N1/E1 Reactions of Benzylic Compounds - Carbocation intermediate formation is the _____-determining step. - □ Benzylic carbocations form ______ than their non-benzylic counterparts. - Alkyl C+: stabilized by _____conjugation. Benzylic C+: stabilized by _____. | Carbocation Formation | | |-----------------------|---------------| | Reaction | Relative Rate | | CI | | | CI | | □ Ortho & para substituents that act as electron _____ groups _____ S_N1 rates at benzylic positions. EDGs: -N: **EXAMPLE:** Which of the following alkyl halides will form a carbocation the fastest? a) c) d) **PRACTICE:** Rank the following alkyl halides in increasing order of reactivity in S_N1 reaction. PRACTICE: Which of the following alcohols will undergo acid-catalyzed dehydration the fastest and which one the slowest? a) 1 and 2 b) 3 and 2 c) 2 and 3 d) 3 and 4 # 2) E2 Reactions of Benzylic Hydrogens - Due to higher _____ of benzylic β-hydrogens, _____ products predominate. - □ Alkene products of such eliminations are conjugated and are stabilized by ___ **EXAMPLE**: Select a compound that will have the fastest rate of E2 reaction with a small strong base. a) b) c) d) both a and b e) both a and c **PRACTICE:** Provide mechanism and structure of major elimination product of the following reaction. #### 3) Benzylic Alcohol Oxidation • A weak oxidation where _____/CH₂Cl₂ _____ oxidizes the benzylic –OH group. □ Benzylic alcohols are much more _____ than non-benzylic alcohols. **EXAMPLE:** Give structure of product of following oxidation reaction. **PRACTICE:** Supply the reagents necessary to accomplish the following transformation. a) 1. CH₃CH₂Br/AlBr₃ b) 1. HNO₃/H₂SO₄ d) 1. HNO₃/H₂SO₄ 2. NBS/hv 2. CH₃CH₂Br/AlBr₃ 2. NBS/hv 2. NaOEt/EtOH 3. NaOEt/EtOH 3. NBS/hv 3. NaOEt/EtOH c) 1. CH₃CH₂Br/AlBr₃ 3. CH₃CH₂Br/AlBr₃ 4. OsO₄/NaHSO₃, H₂O 4. NaOEt/EtOH 4. BH₃·THF/H₂O₂, NaOH 4. NaOEt/EtOH 5. MnO₂/CH₂Cl₂ 5. OsO₄/NaHSO₃, H₂O 5. MnO₂/CH₂Cl₂ 5. H₃O⁺ 6. HNO₃/H₂SO₄ 6. MnO₂/CH₂Cl₂ 6. Br₂/FeBr₃ 6. PCC/CH₂Cl₂ **PRACTICE:** Provide the chemical steps necessary for the following synthesis. **PRACTICE:** Beginning with benzene, provide a method to prepare the following compound.