
- Benzylic positions are _____ due to stable reaction intermediates.
 - 1) S_N1/E1: ______ formation.
 - 2) S_N2/E2: benzylic ______.
 - 3) Oxidation of benzylic _____.

1) S_N1/E1 Reactions of Benzylic Compounds

- Carbocation intermediate formation is the _____-determining step.
 - □ Benzylic carbocations form ______ than their non-benzylic counterparts.
 - Alkyl C+: stabilized by _____conjugation. Benzylic C+: stabilized by _____.

Carbocation Formation	
Reaction	Relative Rate
CI	
CI	

□ Ortho & para substituents that act as electron _____ groups _____ S_N1 rates at benzylic positions.

EDGs:
-N:

EXAMPLE: Which of the following alkyl halides will form a carbocation the fastest?

a)

c)

d)

PRACTICE: Rank the following alkyl halides in increasing order of reactivity in S_N1 reaction.

PRACTICE: Which of the following alcohols will undergo acid-catalyzed dehydration the fastest and which one the slowest?

a) 1 and 2 b) 3 and 2 c) 2 and 3 d) 3 and 4

2) E2 Reactions of Benzylic Hydrogens

- Due to higher _____ of benzylic β-hydrogens, _____ products predominate.
 - □ Alkene products of such eliminations are conjugated and are stabilized by ___

EXAMPLE: Select a compound that will have the fastest rate of E2 reaction with a small strong base.

a)

b)

c)

d) both a and b

e) both a and c

PRACTICE: Provide mechanism and structure of major elimination product of the following reaction.

3) Benzylic Alcohol Oxidation

• A weak oxidation where _____/CH₂Cl₂ _____ oxidizes the benzylic –OH group.

□ Benzylic alcohols are much more _____ than non-benzylic alcohols.

EXAMPLE: Give structure of product of following oxidation reaction.

PRACTICE: Supply the reagents necessary to accomplish the following transformation.

a) 1. CH₃CH₂Br/AlBr₃

b) 1. HNO₃/H₂SO₄

d) 1. HNO₃/H₂SO₄

2. NBS/hv

2. CH₃CH₂Br/AlBr₃

2. NBS/hv

2. NaOEt/EtOH

3. NaOEt/EtOH

3. NBS/hv

3. NaOEt/EtOH

c) 1. CH₃CH₂Br/AlBr₃

3. CH₃CH₂Br/AlBr₃

4. OsO₄/NaHSO₃, H₂O

4. NaOEt/EtOH

4. BH₃·THF/H₂O₂, NaOH

4. NaOEt/EtOH

5. MnO₂/CH₂Cl₂

5. OsO₄/NaHSO₃, H₂O

5. MnO₂/CH₂Cl₂

5. H₃O⁺

6. HNO₃/H₂SO₄

6. MnO₂/CH₂Cl₂

6. Br₂/FeBr₃

6. PCC/CH₂Cl₂

PRACTICE: Provide the chemical steps necessary for the following synthesis.

PRACTICE: Beginning with benzene, provide a method to prepare the following compound.