
CONCEPT: INTRODUCTION TO HEAT TRANSFER

 Remember, HEAT is a transfer of thermal energy from one substance to another. There are 3 ways heat is transferred 	 Remember, HEAT is a 	transfer of thermal energy	from one substance to anoth	er. There are 3 way	s heat is transferred
--	---	----------------------------	-----------------------------	---------------------	-----------------------

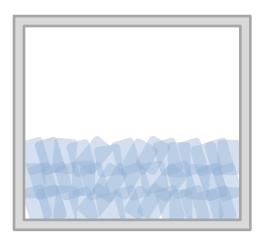
CONDUCTION: ______ transfer of heat between substances at different temperatures via _

 $T_A > T_B$

- Example: Touching a boiling pot of water
- This was how heat was transferred in calorimetry problems

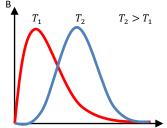
- CONVECTION: _____ transfer of heat by heating a _____ surrounding the hot substance
 - The heated fluid _____ due to increased buoyancy and carries heat upwards with it
 - Example: A candle flame heats the air around it, which rises
 - Governed by complicated equations you won't need to know

- RADIATION: _____ transfer of heat by emitting _____
 - These waves carry an energy ______ to the heat lost by the substance
 - Example: The heat you feel from the glowing filament in a lightbulb, or the Sun!


CONCEPT: CONDUCTION

- - Conduction is the most common type of heat transfer you will encounter in your studies
 - When studying calorimetry, all heat transfers were via conduction
- What we are interested in is how RAPIDLY heat can be conducted from a HOT substance to a COLD substance
 - Hot and cold are relative terms all we mean is one is at a higher temperature than the other
- Materials have a natural allowance for heat flow, known as the THERMAL CONDUCTIVITY, k
 - The larger the thermal conductivity, the [SLOWER / FASTER] heat is conducted
- - The conduction current is the rate at which heat is conducted through a substance
 - The heat conducted would be given by Q =_____ so long as H is constant
 - The conduction current CHANGES as the hot substance becomes cooler and the cold substance becomes hotter
- - A RESERVOIR is an infinite source/sink of heat it can absorb/release an infinite amount of heat with $\Delta T = 0$

<u>EXAMPLE</u>: A hot reservoir at 100°C is connected to a cold reservoir at 0°C by a 15 cm long piece of iron with a 0.05 m² cross section. How much heat crosses the piece of iron in 5 s? The thermal conductivity of iron is 79.5 W/mK.


PRACTICE: ICE MELTING IN A STYROFOAM COOLER

A cubic Styrofoam cooler containing ice on a hot day is shown in the following figure. The thickness of each wall of the cooler is 15 mm, with a side length of 1 m. If it is 40°C outside, how long will 2 kg of ice last in the cooler? Assume that during the melting process, the temperature inside the cooler remains at 0°C and that no heat enters from the bottom of the cooler. Note that the latent heat of fusion for water is 334 kJ/kg and the thermal conductivity of Styrofoam is 0.033 W/mK.

CONCEPT: RADIATION

- Remember! Certain hot objects can expend heat in the form of emitted electromagnetic radiation
 - Substances that emit thermal radiation are known as _____ or ____ or ____
- As with all waves, a particular electromagnetic wave is defined by its frequency (or its wavelength)
 - For light (electromagnetic waves), a particular frequency will be referred to as its ______
- Blackbodies do not emit light at a single color, but emit light across a SPECTRUM of colors
 - The particular color spectrum depends on the temperature of the light
 - The color of light that is seen is the brightest color emitted
 - As temperatures increase, the light shifts from ______ to _____
 - At very high temperatures, the light shifts from _____to ____to

• The RADIANCE OF RADIATION EMITTED by a blackbody-like object is given by the Stefan-Boltzmann Law

 ${m j} =$ ______ where ϵ is the EMISSIVITY – $\epsilon = 1$ for a true blackbody

- σ is known as the Stefan-Boltzmann constant, and is $\sigma = 5.67 \times 10^{-8} \ W/m^2 K^4$
- RADIANCE is the power per unit surface area of the object emitting the thermal radiation
 - Radiance is DIFFERENT than intensity, though they share units, W/m²
- The brightest color in the emission spectrum is given by WEIN'S DISPLACEMENT LAW
 - $b = 2.9 \times 10^{-3} \ mK$ is Wein's displacement constant

$\lambda_{Bright} =$	

EXAMPLE: A spherical object of 0.01 m radius with an emissivity of 0.8 is heated to a temperature of 1000 K. How much heat is radiated by this object in 5 ms? What is the brightest color of the radiation? Assume that during these 5 ms, the temperature of the object does not change.

PRACTICE: SURFACE TEMPERATURE OF THE SUN

If the intensity of sunlight measured at the Earth's surface is 1400 W/m², what is the surface temperature of the Sun? Treat the Sun like a true blackbody. Note that the distance from the Earth to the Sun is 1.5 x 10¹¹ m and the radius of the Sun is 696 million meters.