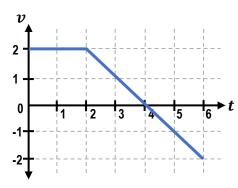
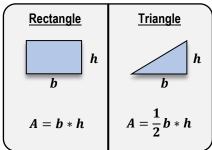
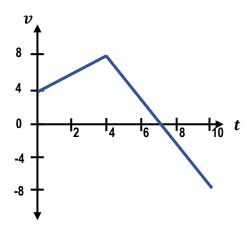
CONCEPT: CALCULATING DISPLACEMENT FROM VELOCITY-TIME GRAPHS

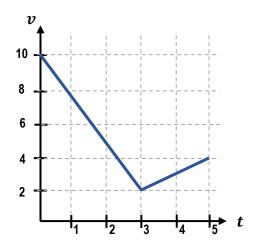

- In velocity-time graphs, the <u>displacement</u> (Δx) between two points is the _____ "under the curve" (graph)
 - "under the curve" = between the **graph** and **time** axis


EXAMPLE: The velocity-time graph for a moving object is shown.

- a) Calculate the displacement for the first 4.0s
- b) Calculate the displacement for the entire motion



• Areas <u>below</u> the **time** axis \rightarrow [POSITIVE | NEGATIVE] displacement Δx



<u>PRACTICE</u>: A moving box's motion is described by the velocity graph below. The box's initial position is $x_0 = 0$. (a) How far has the box moved from t=0 to t=4.0s? (b) How far does the box move from t=4 to t=10s?

EXAMPLE: The figure shows the velocity graph for a car having initial position $x_0 = -21m$ at t = 0. What is the car's final position at t = 5.0s?

