CONCEPT: MUTUAL INDUCTANCE

- Mutual Inductance: For two nearby conducting coils, a current changing through one coil induces an EMF on the other.
 - The coil with the changing current is known as the _____, the other is the _____.
- Total Flux Φ_2 depends on \mathbb{N}_2 & Magnetic Field \overrightarrow{B} , which depends on _____
 - Φ_2 is _____ to i_1
 - \rightarrow _____

• M is a proportionality constant called the MUTUAL INDUCTANCE

$$M =$$
 \longrightarrow UNITS: Henry [H] \longrightarrow 1 H = 1 /

- depends only on the # of turns and the shape of the coils! (i1 will cancel out)

EXAMPLE: What is the mutual inductance of two solenoids of length L and area A, one with N₁ turns and the other with N₂?

• The EMF on the secondary coil is

EXAMPLE: A solenoid of 25 turns, with an area of 0.005 m² is wound around a 10 cm solenoid with 50 turns, as shown in the figure below. If, at some instant in time, the current through the 10 cm solenoid is 0.5 A and changing at 50 mA/s, what's the induced EMF on the 25 turn solenoid?

PRACTICE: MUTUAL INDUCTANCE OF TWO SOLENOIDS

An outer solenoid with 30 turns is wound tightly around an inner coil 25cm long with a diameter of 4cm and 300 turns. The current in the inner solenoid is 0.12 A and is increasing at a rate of 1.75×10^3 A/s. **a)** What is the average magnetic flux through each turn of the outer coil? **b)** If the resistance of the outer coil is $20\text{m}\Omega$, what is the magnitude of the induced current through the outer coil?