CONCEPT: CONSERVATION OF ENERGY EQUATION WITH NON-CONSERVATIVE FORCES

• If NON-conservative forces do work (**W**_{NC} ___ **0**), Mech. Energy is _____ conserved.

Conservative		Non-Conservative	
Forces		Forces	
Gravity	Springs	Applied	Friction

- However, still use the **Conservation of Energy** equation to solve these problems!

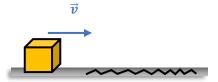
$$K_i + U_i + \underline{\hspace{1cm}} = K_f + U_f$$
(Conservation of Energy)

$$W_{NC} = \underline{\hspace{1cm}}$$

- W_{NC} is simply the _____ of work done by any applied forces + friction.

EXAMPLE: A 0.5 kg hockey puck is initially moving along the smooth ice at 4m/s. Using your hockey stick, you push the puck with a constant 200N through a distance of 0.3m. Calculate the puck's final speed.

CONSERVATION OF ENERGY


- 1) Draw Diagram
- 2) Write Cons. of Energy EQ
- 3) Eliminate & expand terms
- 4) Solve

WORK & ENERGY

 $W = Fdcos\theta$ $W_{F_A} = F_Adcos\theta$

 $W_{f_k} = -f_k d$

<u>PROBLEM</u>: A block of unknown mass is sliding along a flat surface with 30m/s when it enters a long, rough patch. If the coefficient of friction between the block and the floor is 0.6, calculate the distance the block travels before stopping.

CONSERVATION OF ENERGY

- 1) Draw Diagram
- 2) Write Cons. of Energy EQ
- 3) Eliminate & expand terms
- 4) Solve

• Whenever M.E. isn't conserved, W_{NC} always makes up the difference. W_{NC} = energy added/removed from system

PROBLEM: An 800kg car skids to a stop from 30m/s through a distance of 90m. Calculathe car and the road.	ate the coefficient of friction between
	1) Draw Diagram 2) Write Cons. of Energy EQ 3) Eliminate & expand terms 4) Solve
<u>PROBLEM</u> : A 2-kg object dropped from a height of 80m reaches the floor with 30m/s. U a) the amount of work done by air resistance, and b) the <u>average</u> force of air resistance.	
	1) Draw Diagram 2) Write Cons. of Energy EQ 3) Eliminate & expand terms 4) Solve
We can use Energy Conservation to solve problems with "resistive" forces like air/water	er resistance, which act like friction!