HOW TO SOLVE: TORQUE VS. CONSERVATION OF ENERGY

_	Remember: Some	1 :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	طائنين لمميرامم مطم	TT on	d Matian Fa	untions OD	Canaamiatian	of Coord
•	Kelliellibel Sollie	Linear motion	DIODIEITIS Ca	II DE SOIVEU WILII	ZF-IIIa all	u wollon Eu	ualions OR	Constitution	JI EHEIUV

- For example, there are two ways to find the velocity of the block at the bottom of the plane:

- Likewise, some Rotational motion problems can be solved with $\Sigma \tau = l\alpha$ and/or Motion or Conservation of Energy.
- Depending on what you're being asked and what you're being given, one method is "better" than the other:
 - Generally, you will use $\Sigma \tau = I\alpha$ to solve problems asking for (or giving) _____ or ____.
 - Use <u>Conservation of Energy</u> to solve problems asking for (or giving) _____ or ____.
 - ALWAYS use Motion Equations if looking for _____ (____) or need it to solve a problem.
 - Sometimes you may be asked to use a specific method, in which case you have no choice :(
- Two questions may look almost identical, but require very different methods to solve. For example:
 - A yo-yo spins around itself as it falls. Find its acceleration after dropping 2 m → _____
 - A yo-yo spins around itself as it falls. Calculate its speed after dropping 2 m →
 - A yo-yo spins around itself as it falls. How long does it take to drop 2 m? →