CONCEPT: BANKED CURVE

• Unlike flat curve problems, Banked Curve problems involve objects travelling in circular motion on frictionless inclines.

- Because the centripetal direction is *horizontal*, we use an _____ coordinate system (regular X & Y axes).

- WITHOUT friction, objects accelerate centripetally from the ______ Force (x-component).

<u>EXAMPLE</u>: An 800kg racecar on a racetrack drives around a banked, frictionless curve inclined 37° above the horizontal. The radius of the curve is 200m. Find the exact speed of the car such that it moves *without sliding* up OR down the incline.

CENTRIPETAL FORCES

1) Draw FBD

2) Write $\Sigma F_c = ma_c$ (rewrite $a_C \Rightarrow v^2/R$)

3) Solve

Circ. Motion / Centripetal Forces

$$a_C = \frac{v_T^2}{R} = \frac{4\pi^2 R}{T^2} = 4\pi^2 R f^2$$

$$T = \frac{1}{f} \iff f = \frac{1}{T}$$

 $v_T = \frac{C}{T} = \frac{2\pi R}{T} = 2\pi R f$ Flat Curve: $v^2 = gR\mu_s$

Banked Curve: $v^2 = gRtan\theta$

	μ	θ	EQ
Flat Curve			
Banked Curve			

<u>PROBLEM</u>: A bobsled turn banked at 78° is taken at 24 m/s. Assume it is ideally banked and there is no friction between the ice and the bobsled. Calculate the centripetal acceleration of the bobsled.

- **A)** 1100 m/s²
- **B)** 2.08 m/s²
- **C)** 46.1 m/s²
- **D)** 1.92 m/s²

CENTRIPETAL FORCES

- 1) Draw FBD
- 2) Write $\Sigma F_c = ma_c$ (rewrite $a_C \Rightarrow v^2/R$)
- 3) Solve

Circ. Motion / Centripetal Forces

$$a_C = \frac{v_T^2}{R} = \frac{4\pi^2 R}{T^2} = 4\pi^2 R f^2$$

$$T = \frac{1}{f} \iff f = \frac{1}{T}$$

 $v_T = \frac{c}{T} = \frac{2\pi R}{T} = 2\pi R f$ Flat Curve: $v^2 = gR\mu_s$

Banked Curve: $v^2 = gRtan\theta$