TYPES OF MOTION AND ENERGY

KINETIC ENERGY OF A POINT MASS

- A Point Mass in a circular path has *rotational* speed (w) and a *linear equivalent* (v,TAN), BUT only ONE type of motion.
 - So it only has ONE type of kinetic energy, BUT you can calculate it using EITHER equations (K_L or K_R).
 - This is because the 2 equations are equivalent. What you can't do is have BOTH it would be "double counting".

EXAMPLE: A small 2-kg object spins horizontally around a vertical axis at a rate of 3 rad/s, maintaining a constant distance of 4 m to the axis. Calculate the object's kinetic energy using: (a) K_L ; (b) K_R .

PRACTICE: ROTATIONAL ENERGY / ENERGY OF EARTH

<u>PRACTICE</u>: The Earth has mass 5.97 x 10^{24} kg, radius 6.37 x 10^6 m. The Earth-Sun distance is 1.5 x 10^{11} m. Calculate the Earth's kinetic energy as it spins around itself. \rightarrow <u>BONUS</u>: Find the Earth's kinetic energy as it goes around the Sun.