CONCEPT: WEIGHT FORCE AND GRAVITATIONAL ACCELERATION

• All objects near Earth are affected by gravity . Gravity produces a Force , which produces an acceleration . ()	
• GRAVITY	
- Concept	ual phenomena which says that objects with mass attract each other
• <u>FORCE</u> due	e to Gravity (a.k.a)
==	UNITS:
- Always	points towards Earth's center (usually pointing down)
• ACCELERA	ATION due to GRAVITY (a.k.a. <u>Gravitational Acceleration</u>)
=_	= (near Earth) UNITS:
- NOT co	nstant, varies by location: For example, g _{Earth} =, g _{Moon} =
 The term "WEIGHT" is used incorrectly in everyday Scales don't measure WEIGHT. Instead, they me Mass [] = Quantity of matter, [DOES I Weight [] = Force due to gravity. [DOES 	easure
EXAMPLE: You step on a bathroom scale and it measures your "weight" to be 70kg. What is your REAL weight on Earth's surface?	
EXAMPLE: If an object has mass 10kg on the Earth, what is its weight on the Moon if g _{moon} =1.62 m/s ² ?	what is its mass on the Moon? What is its weight on the Earth?

<u>PROBLEM</u>: The Mars Rover Perseverance weighed about 10,000 N while on Earth. After it reached the surface of Mars, it weighed about 3790 N. What is the gravitational acceleration on Mars?

- **A)** $g_{Mars} = 0.039 \text{ m/s}^2$
- **B)** $g_{Mars} = 0.27 \text{ m/s}^2$
- **C)** $g_{Mars} = 3.7 \text{ m/s}^2$
- **D)** $g_{Mars} = 26 \text{ m/s}^2$

CONCEPT: VERTICAL FORCES AND ACCELERATION IN THE Y-AXIS

• You'll need to solve problems where vertical forces cause objects to accelerate in the Y-axis.

FORCES

- 1) Draw FBD: W,FA,T,N,f
- 2) Write $\Sigma F = ma$
- 3) Solve

<u>EXAMPLE</u>: A 5.1 kg block is in the air, being pulled vertically by a (massless) string. Find the block's acceleration for each of the following Tension forces.

a)
$$T = 70N$$

- If
$$|F_{up}|$$
 $|F_{down}| \Rightarrow a = [positive | negative | 0 | -g]$

- If
$$|F_{up}|$$
 $|F_{down}| \Rightarrow a = [positive | negative | 0 | -g]$

c)
$$T = 50N$$

d)
$$T = 0N$$

- If
$$|F_{up}|$$
 $|F_{down}| \Rightarrow a = [$ positive | negative | 0 | -g]

- If
$$|F_{up}| \Rightarrow a = [positive | negative | 0 | -g]$$

(Assuming no other forces)

<u>PROBLEM</u>: A 3-kg bucket is being pulled upwards by a cord. The tension in the cord is 35 N. What is the acceleration of the bucket? (The mass of the cord is negligible, which means you can assume $m_{cord} = 0$.)

- **A)** 25 m/s²
- **B)** 1.9 m/s²
- **C)** 21 m/s²
- **D)** 8.4 m/s²

FORCES

- 1) Draw FBD: W,FA,T,N,f
- 2) Write $\Sigma F = ma$
- 3) Solve

<u>PROBLEM</u>: A 100-kg load of bricks is being lowered down on a cable at a speed of 5 m/s. If the load takes 2 s to slow from that speed to a stop, what is the tension in the supporting cable during that time interval?

- **A)** 1230 N
- **B)** 730 N
- **C)** 1480 N
- **D)** 980 N

FORCES

- 1) Draw FBD: W,FA,T,N,f
- 2) Write $\Sigma F = ma$
- 3) Solve