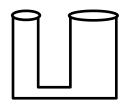
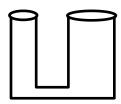
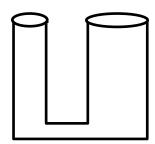

PASCAL'S LAW AND THE HYDRAULIC LIFT


- (1) PASCAL'S LAW: "Pressure in a confined fluid is transmitted equally throughout the fluid". ALSO:
 - (2) Pressure in a liquid DOES / DOES NOT depend on the shape of the container.
 - (3) In connected columns, liquid HEIGHT is the same if _____ is the same ("water seeks its own level")



- HYDRAULIC LIFT: Pressure within the SAME liquid is equal at the SAME ______.
 - (1) No pistons (caps)
- (2) Pistons of same thickness
- (3) Push down on left piston



EXAMPLE: A hydraulic lift is designed with columns having areas 1 m² and 4 m². Pistons of equal thickness are placed on top of each column of water. If you push down with 10 N on the smaller column, causing it to lower by 20 cm:

- (a) How much force acts on the right piston? (b) How much does the right piston rise by?

- Hydraulic Lifts MULTIPLY ______ by a factor of _____. This factor is called Mechanical Advantage.
 - Hydraulic Lifts also REDUCE ______ by the same factor.
 - MOST Hydraulic Lift problems have cylindrical columns (Area = _____, Volume = ____ = ____)

EXAMPLE: HYDRAULICT LIFT / PROPORTIONAL REASONING

EXAMPLE: A hydraulic lift is designed with cylindrical columns,	s, one having <u>double</u> the radius as the other. Both c	columns
are capped with pistons of the same density and thickness:		

(i) If you push on the piston on the thinner column with force F, how much force will act on the other piston?

(a) F/4

(b) F/2

(c) F

(d) 2F

(e) 4F

(ii) If you cause the piston on the thinner column to move a distance H, how much will the other piston move?

(a) H/4

(b) H/2

(c) H

(d) 2H

(e) 4H

EXAMPLE: HYDRAULIC LIFT / FORCE TO LIFT CAR

EXAMPLE: A hydraulic lift is designed with cylindrical columns having radii 20 cm and 2.0 m. What minimum downward force is needed on the smaller piston to lift an 800-kg car on the larger piston?