CONCEPT: Kepler's First Law

• All orbits are _____ (even circular ones!) with the Sun at one focus. Nothing physical at other focus.

- Major axis → _____ axis (Length:
 - Closest distance: Perihelion/periapsis
 - Farthest distance: Aphelion/apoapsis
 - Semi-major axis: a =
- Minor axis → _____ axis (Length:
- Eccentricity of orbit (e) → # between 0 and 1, measures how ______ the orbit is.
 - Lower #s (near 0) are nearly [CIRCULAR | ELLIPTICAL]
 - Higher #s (near 1) are very [CIRCULAR | ELLIPTICAL]
 - Eccentricity relates the aphelion & perihelion with the semi-major axis:

R_a = _____

*R*_p = _____

<u>EXAMPLE</u>: Earth's closest distance to the Sun is 1.471×10¹¹m, while its farthest distance is 1.521×10¹¹m. Calculate **a)** Earth's semi-major axis and **b)** orbital eccentricity.

ELLIPTICAL ORBITS $a = \frac{R_a + R_p}{2}$

$$R_a = a(1+e)$$

$$R_p = a(1-e) \\$$

<u>PRACTICE</u>: Pluto's orbit is the most eccentric of the 9 large objects in our solar system, with e = 0.25. The total distance from Pluto's closest to farthest point from the Sun is 1.18×10¹³m. a) How close does it get to the Sun? b) How far does it get from the Sun?

ELLIPTICAL ORBITS
$$a = \frac{R_a + R_p}{2}$$

$$R_a = a(1 + e)$$

$$R_p = a(1 - e)$$