ROTATIONAL POSITION & DISPLACEMENT

Rotational Motion is motion around a	point, that is, in a path.	
- The rotational equivalent of linear POSITION () is Rotational/Angular position ().		
LINEAR POSITION	ROTATIONAL POSITION	
- How far you are from the	- How far you are from the	
- Measured in	- Measured in	
- Origin is where	- Origin is where	
- Origin is	- Origin is:	
- Direction (+/-) is	- Always at the	
	- Direction (+/-) is:	
	cw ccw	
The rotational equivalent of linear DISPLACEMENT () is Rotational Displacement ().		ΔX →
- These two quantities are "LINKED" by an equation (and r = <i>radial distance</i> , "radius"):		ΔX =
- This equation "speaks"	Input must be in radians. Output will be in radians.	()
- One radian is approximately 57°.	→ To convert between radians and degrees, use:	=

EXAMPLE: An object moves along a circle of radius 10 m from 30° above the positive x-axis to 120° above the +x-axis. Calculate the object's (a) angular displacement, and (b) linear displacement.

DISPLACEMENT IN MULTIPLE REVOLUTIONS

- If you make one full *revolution* around a circle: $\Delta\Theta = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \rightarrow \Delta X = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
 - If you make **N** full revolutions: $\Delta\Theta = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \rightarrow \Delta X = \underline{\hspace{1cm}}$.
 - To find out how many revolutions you go through, simply divide **ΔΘ** by ______ or _____.
 - To find out how far from 0° you end up after many revolutions, subtract by 360° until Θ < 360° (or Θ < 2 π).

EXAMPLE: Starting from 0°, you make two 2.2 revolutions around a circular path of radius 20 m. (a) What is your rotational displacement, in degrees? (b) How many degrees away from 0° are you? (c) What is your linear displacement?

PRACTICE: ROTATIONAL DISPLACEMENT

PRACTICE: While you drive, your tires, all of radius 0.40 m, rotate 10,000 times. How far did you drive, in meters?

PRACTICE: ROTATIONAL DISPLACEMENT

PRACTICE: An object moves a total distance of 1,000 m around a circle of radius 30 m.

How many degrees does the object go through?

 \rightarrow BONUS: How many complete revolutions does it make?

PRACTICE: ROTATIONAL DISPLACEMENT

PRACTICE: A car travels a total of 2,000 m and 1140° around a circular path, starting from **0**°.

What is the radius of the circular path?

 \rightarrow BONUS: How far (in degrees) from 0° does the car end up?