CONCEPT: Universal Law of Gravitation

• Newton's Universal Law of Gravitation: All objects in the universe ______.

- Universal Gravitation Constant (G) = $\left[\frac{m^3}{kg \cdot s^2}\right]$
 - Not little g! ← local constant
- **r** is the distance between ______.
- Gravitational forces are directed along _____ connecting 2 objects.

EXAMPLE: Two 30-kg spheres are separated by 5m. What is the gravitational force between them?

CONCEPT: Center-of-Mass Distance

• From the Universal Law of Gravitation, "r" is center-of-mass distance between 2 objects. What if 1 object is really big?

EXAMPLE: At what height above Earth is the gravitational force on a 1000-kg satellite equal to 1000N?

GRAVITATIONAL CONSTANTS $G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$ $M_E = 5.97 \times 10^{24} \text{ kg}$ $R_E = 6.37 \times 10^6 \text{ m}$

• Pro Tip: When looking for **R** or **h**, solve for **r** first, then use $\mathbf{r} = \mathbf{R} + \mathbf{h}$.

