## **CONCEPT: SPEED OF LONGITUDINAL WAVES IN FLUIDS AND SOLIDS**

• Just like transverse waves, the **speed** of longitudinal waves depends *only* on the properties of the **medium**:

## **TRANSVERSE**

## $v_{string} = \sqrt{\frac{F_T}{\mu}} = \lambda f$

## **LONGITUDINAL**

For **FLUIDS**:

 $v_{long} = \overline{\phantom{a}} = \lambda t$ 

In **SOLIDS**:

 $v_{long.} = \sqrt{---} = \lambda f$ 

 $m{Y}$  = Young's modulus of solid/rod material

 $\beta$  = bulk modulus of fluid  $\rho$  = density of fluid

 $\rho$  = density of solid

EXAMPLE: In a liquid of density 1200 kg/m³, longitudinal waves with a frequency of 400Hz have a wavelength of 8m. Calculate the bulk modulus of the liquid.

EXAMPLE: You strike a 60.0-m-long brass at one end. How long does it take for a person on the other end of the rod to hear the sound? The Young's Modulus of brass is 9×10<sup>10</sup> Pa and the density is 8600 kg/m<sup>3</sup>.

<u>PROBLEM</u>: A metal bar has a length of 1.5m and a density of 6400 kg/m<sup>3</sup>. Sound waves take 3.9×10<sup>-4</sup>s to travel along the length of the bar. What is the Young's modulus for this metal?

- **A)** 2,311 Pa
- **B)** 9.47×10<sup>10</sup> Pa
- **C)** 2.46×10<sup>7</sup> Pa
- **D)** 3.744 Pa

| WAVES                                                    |
|----------------------------------------------------------|
| $v = \lambda f$ (all waves)                              |
| $v = \sqrt{\frac{F_T}{\mu}}$ (for strings only)          |
| $v = \sqrt{\frac{\beta}{\rho}}$ (long. waves in liquids) |
| $v = \sqrt{\frac{Y}{\rho}}$ (long. waves in solids)      |

<u>PROBLEM</u>: In a container, 32 g of oxygen occupies 0.0224 m³. If the speed of sound in this container is 317 m/s, what is the bulk modulus for oxygen gas?

- **A)** 1.44×108 Pa
- **B)** 453 Pa
- **C)** 1.44×10<sup>5</sup> Pa
- **D)** 7.03×10<sup>4</sup> Pa

$$waves$$

$$v = \lambda f \quad \text{(all waves)}$$

$$v = \sqrt{\frac{F_T}{\mu}} \quad \text{(for strings only)}$$

$$v = \sqrt{\frac{\beta}{\rho}} \quad \text{(long. waves in liquids)}$$

$$v = \sqrt{\frac{\gamma}{\rho}} \quad \text{(long. waves in solids)}$$