

CONCEPT: SOLVING CALORIMETRY PROBLEMS

- Calorimetry problems involve __ materials at different T's mixing in a container until they reach the _____ temperature.
 - IF container is ISOLATED (no heat exchanged w/ outside), the heat *lost* by 1 material ____ heat *gained* by the other.

- The thermal equilibrium temperature very similar to the Center-of-Mass:

EXAMPLE: You have 1kg of water at 20°C in an insulated styrofoam cup. You then add 5kg of water at 90°C. a) Calculate the final equilibrium temperature of the mixture.

CALORIMETRY

- 1) Write $Q_A = -Q_B$
- 2) Replace Q's with mcΔT
- 3) Solve for Target

SPECIFIC HEAT & CALORIMETRY

 $Q = mc\Delta T$ $c_{water} = 4186 \text{ J/(kg·K)}$ <u>PROBLEM</u>: You have a cup of 0.5kg of water at 15°C. How much boiling water at 100°C should you add to the cup to make final temperature of the water mixture exactly 80°C?

SPECIFIC/LATENT HEAT & CALORIMETRY

 $Q = mc\Delta T$ (temp change) Q = mL (phase change)

 c_{water} = 4186 J/(kg·K)

CONCEPT: EQUILIBRIUM TEMPERATURE IN CALORIMETRY PROBLEMS

• There's a useful equation to calculate equilibrium temperature for any # materials:

$$T_f = \frac{\Sigma m \cdot c \cdot T}{\Sigma m \cdot c} = \frac{\Gamma m \cdot c \cdot T}{\Gamma m \cdot c} = \frac{\Gamma m \cdot c}{\Gamma m \cdot c} = \frac{$$

<u>EXAMPLE</u>: You have 0.4kg of water at 10°C in an insulated styrofoam cup. You then add a 0.2kg block of aluminum of water at 80°C. **a)** Derive an expression for the final equilibrium temperature of the mixture. **b)** Calculate the final equilibrium temperature using your expression from part A.

CALORIMETRY

- 1) Write $Q_a = -Q_b$
- 2) Replace Q's with mcΔT
- 3) Solve for Target

SPECIFIC HEAT & CALORIMETRY

 $Q = mc\Delta T$

 c_{water} = 4186 J/(kg·K)

 $c_{Al} = 900 \text{ J/(kg·K)}$

<u>PROBLEM</u>: 150g of water at 35°C are poured into a 65-g aluminum cup with an initial temperature of 11°C. Assuming no heat is exchanged with the surroundings, what is the final temperature of the system?

CALORIMETRY

- 1) Write $Q_a = -Q_b$
- 2) Replace Q's with mcΔT
- 3) Solve for Target

SPECIFIC/LATENT HEAT & CALORIMETRY

 $Q = mc\Delta T$ (temp change)

Q = mL (phase change)

$$T_f = \frac{\Sigma m \cdot c \cdot T}{\Sigma m \cdot c} = \frac{m_A c_A T_A + m_B c_B T_B}{m_A c_A + m_B c_B}$$

 c_{water} = 4186 J/(kg·K)

 c_{Al} = 910 J/(kg·K)