MOMENT OF INERTIA

Remember: Motion problems do NOT depend on Mas	es, but Energy (eg. K = $\frac{1}{2}$ m v²) and Force (Σ l	= = ma) problems do.
- Mass is the <i>amount of resistance</i> to LINEAR	acceleration, which we call (linear)	:
● In ROTATION, the <i>amount of resistance</i> to ANGULA	AR acceleration depends on mass AND	
- This combination is called	(), and it's the rotational equiva	alent of!
	- You can think of it as (rotation	onal)
There are two types of objects:		
<u>Point Masses</u> ()	Rigid E	Bodies/Shapes)
<i>I</i> =, where r =	I is found by Table Lookup $ ightarrow$ General F	orm: I = [fraction] mR ²

EXAMPLE: A system is made of two point masses ($M_{LEFT} = 3 \text{ kg}$, $M_{RIGHT} = 4 \text{ kg}$) at the ends of a 2-m long massless rod, as shown. Calculate the moment of inertia of the system if it spins about a perpendicular axis through the center of the rod.

Common Moments of Inertia		
Point Masses		
m r	$I = mr^2$	
Center of Rod	1	
M	$I = \frac{1}{12}ML^2$	

• The moment of inertia of a system of objects is the sum of each moment of inertia of the objects that make it up.

I _{sys} =	
393	

PRACTICE: MOMENT OF INERTIA / SIMPLE SYSTEM

<u>PRACTICE</u>: A system is made of two small masses ($M_{LEFT} = 3 \text{ kg}$, $M_{RIGHT} = 4 \text{ kg}$) attached to the ends of a 5 kg, 2-m long thin rod, as shown. Calculate the moment of inertia of the system if it spins about a perpendicular axis through the mass on the left.

Common Moments of Inertia		
Point Masses	2	
m r	$I = mr^2$	
End of Rod		
	$I = \frac{1}{3}mL^2$	
Center of Rod	_	
	$I = \frac{1}{12}mL^2$	

EXAMPLE: MOMENT OF INERTIA / EARTH

EXAMPLE: The Earth has mass and radius $5.97 \times 10^{24} \text{ kg}$ and $6.37 \times 10^{6} \text{ m}$. The radial distance between the Earth and the Sun is $1.50 \times 10^{11} \text{ m}$. Calculate the Moment of Inertia of the Earth as it spins around:

- (a) itself -- treat the Earth as a solid sphere (solid spheres have moment of inertia given by 2/5 mR2);
- (b) the Sun -- treat the Earth as a point mass.

PRACTICE: MOMENT OF INERTIA / FIND MASS
<u>PRACTICE</u> : A solid disc 4 m in diameter has a moment of inertia equal to 30 kg m² about an axis through the disc, perpendicular to its face. The disc spins at a constant 120 RPM. Calculate the mass of the disc.
EVANDLE MOMENT OF INERTIA (WITH DENOITY
EXAMPLE: MOMENT OF INERTIA / WITH DENSITY
EXAMPLE: A planet is nearly spherical with nearly continuous mass distribution, with 8 x 10 ⁷ m in radius and 10,000 kg/m ³ in density. If the planet rotates around itself, calculate its moment of inertia around its central axis (Note: $V_{SPHERE} = 4/3 \pi R^3$).