CONCEPT: INTRO TO UNIFORM CIRCULAR MOTION

In Uniform Circular Motion (UCM), objects move in a circular path with	
- \vec{v} changes direction in UCM; \vec{v} at any point is called the velocity (\vec{v}_T) .	
- \vec{a} ("centripetal" = center-seeking) points towards of the path ($\vec{a}_{\it C}$ or $\vec{a}_{\it rad}$).	•
- R is the distance from the edge of the path to the center, or the of the path.	
$a_c =$ Units: []	

EXAMPLE: You move at constant 5 m/s when you turn into a circle of radius 10m. Calculate your centripetal acceleration.

PROBLEM: A ball travels on a frictionless circular track at 3m/s	. The ball cannot have an acceleration greater than 1.5m/s
or it will go off the track. What is the smallest radius the circular	track can have so that the ball stays on the track?

Circ. Motion

$$a_C = \frac{{v_T}^2}{R}$$

<u>PROBLEM</u>: The Moon travels in a circular orbit of radius $\mathbf{R} = 3.85 \times 10^8$ m around the Earth because of gravity. Because of the large distance, the centripetal acceleration of the Moon is only 0.0026m/s². How fast would the Moon be moving if it suddenly broke free of Earth's gravity and stopped orbiting?

Circ. Motion

$$a_C = \frac{{v_T}^2}{R}$$