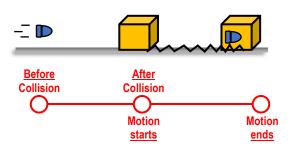

CONCEPT: COLLISION PROBLEMS WITH MOTION/ENERGY

- Some problems involve a collision AND motion with changing speeds/heights after the collision.
 - In these problems, we'll use BOTH Conservation of ______ AND Conservation of _____ (during collision part) (during motion part)
 - You'll often start with one of these EQs, but have to use the other to fully solve.

<u>EXAMPLE</u>: A 20-kg crate moving with 40m/s to the right on a smooth surface collides and sticks to 30-kg crate initially at rest. After the collision, the crates move together up a frictionless incline. How high do the crates travel before stopping?

CONSERVATION OF MOMENTUM WITH ENERGY

- 1) Draw Diagrams, label points of interest (Points of Interest: Before/After Collision, end of motion)
- 2) Write Momentum & Energy Conservation EQs
- 3) Plug in values & solve

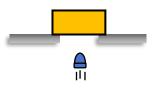

CONSERVATION EQUATIONS

$$\begin{split} m_1 v_{1i} + m_2 v_{2i} &= m_1 v_{1f} + m_2 v_{2f} \ \text{(C.O.M)} \\ K_i + U_i + W_{NC} &= K_f + U_f \ \ \text{(C.O.E)} \end{split}$$

- In Comp. Inelastic Collisions, Energy isn't conserved <u>during</u> collision (A \rightarrow B), but is conserved <u>after</u> (B \rightarrow C) (if W_{NC} = ___.)
- Most problems solved using this method have one of these 4 setups:

Situation	Diagram
1) Collision → Incline	
2) Collision → Spring	
3) Collision → Friction	
4) Collision → Pendulum	

<u>PROBLEM</u>: A 300g bullet is fired horizontally into a 10-kg wooden block initially at rest on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.6. The bullet remains embedded in the block, which then slides 35 m along the surface before stopping. What was the initial speed of the bullet?


CONSERVATION OF MOMENTUM WITH ENERGY

- 1) Draw Diagrams, label points of interest (Points of Interest: Before/After Collision, end of motion)
- 2) Write Momentum & Energy Conservation
- 3) Plug in values & solve

<u>PROBLEM</u>: A 6g bullet is fired *upwards* at 800 m/s into the <u>bottom</u> of a 1.2-kg wooden block at rest. The bullet travels through the center of the block and emerges moving upwards at 150m/s. What maximum height does the block reach?

CONSERVATION OF MOMENTUM WITH ENERGY

- 1) Draw Diagrams, label points of interest (Points of Interest: Before/After Collision, end of motion)
- 2) Write Momentum & Energy Conservation FOs
- 3) Plug in values & solve

