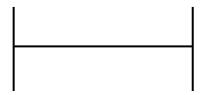

CONCEPT: INTRO TO TRANSVERSE STANDING WAVES


- When a traveling wave reaches a fixed endpoint, it creates a reflected wave that travels backwards, upside-down.
 - For *most frequencies*, these waves interfere randomly.
 - For very special frequencies, these waves interfere & make a wave that "looks" _____ → <u>Standing Wave</u>

[You change the wave width by changing your frequency (wiggle faster/slower)]

- There are infinite special frequencies which create standing waves, where n = # of loops.
 - "Fundamental" Frequency $(f_1) \Rightarrow$ always when $n = ____$

<u>EXAMPLE</u>: A string between two supports vibrates in a standing-wave pattern of 3 loops with a frequency of 15Hz. **a)** Draw a sketch of the wave. **b)** What is the fundamental frequency? **c)** What is the frequency for standing wave with 5 loops?

<u>PROBLEM</u>: By whipping a string up and down, you determine the fundamental frequency to be 4 Hz. If you attached the string to a motorized oscillator and increased the frequency to 28Hz, how many loops would this standing wave have?

- **A)** 14
- **B**) 4
- **C)** 28
- **D)** 7

STANDING WAVES

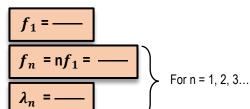
 $f_n = nf_1$

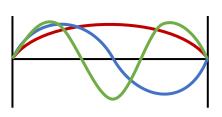
<u>PROBLEM</u>: One of the harmonic frequencies for a particular string under tension is 325 Hz. The next higher harmonic frequency is 390 Hz. What harmonic frequency is next higher after the harmonic frequency 195 Hz?

- **A)** 130 Hz
- **B)** 260 Hz
- **C)** 196 Hz
- **D)** 4 Hz

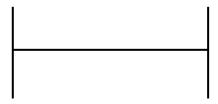
STANDING WAVES

 $f_n = nf_1$


CONCEPT: EQUATIONS FOR TRANSVERSE STANDING WAVES

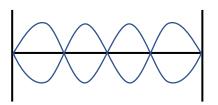

• Standing Waves can ONLY exist for special "Harmonic" frequencies, and have special values for wavelength:

- "Fundamental" (n=1) Frequency:


- Harmonic frequencies:

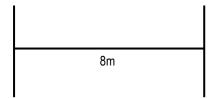
- Wavelength:

<u>EXAMPLE</u>: A 1.5m long string stretched between two supports with a Tension that makes the speed of transverse waves 48 m/s. What are the wavelength and frequency of the **a**) fundamental tone; **b**) first overtone?


• "Harmonic" and "Overtone" are 2 words that tell you the value of n.

1st harmonic: n = 1; 2nd harmonic: n = 2; 3rd harmonic: n = 3; (fundamental) 1st overtone: n = 2; 2nd overtone: n = 3;

- In general, nth Overtone = n tones over fundamental frequency

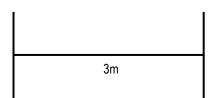

<u>PROBLEM</u>: The figure below shows a standing wave on a 2.0-m-long string that has been fixed at both ends and tightened until the wave speed is 40 m/s. What is the frequency of this wave?

- **A)** 20 Hz
- **B)** 160 Hz
- **C)** 40 Hz
- **D)** 10 Hz

STANDING WAVES $f_1 = \frac{v}{2L}$ $f_n = nf_1 = \frac{nv}{2L}$ $\lambda_n = \frac{2L}{n}$ $n^{th} Overtone = (n+1)^{th} Harmonic$

<u>PROBLEM</u>: A string fixed at both ends is 8 m long and has a mass of 0.20 kg. It is subjected to a tension of 100.0 N and set oscillating. a) What is the speed of waves on the string? b) What is the longest possible wavelength for a standing wave? c) Calculate the frequency of that wave.

STANDING WAVES $v = \sqrt{\frac{F_T}{\mu}} \text{ (for strings only)}$ $f_1 = \frac{v}{2L}$ $f_n = nf_1 = \frac{nv}{2L}$ $\lambda_n = \frac{2L}{n}$ $n^{th} \text{ Overtone} = (n+1)^{th} \text{ Harmonic}$


<u>PROBLEM</u>: A 3m-long rope is stretched between two supports with a tension that makes the speed of transverse waves 60 m/s. What are the wavelength and frequency of the second overtone?

A) $\lambda = 2 \text{ m}$; f = 30 Hz

B) $\lambda = 1 \text{ m}$; f = 60 Hz

C) $\lambda = 3 \text{ m}$; f = 20 Hz

D) $\lambda = 6 \text{ m}$; f = 10 Hz

STANDING WAVES $v = \sqrt{\frac{F_T}{\mu}} \text{ (for strings only)}$ $f_1 = \frac{v}{2L}$ $f_n = nf_1 = \frac{nv}{2L}$ $\lambda_n = \frac{2L}{n}$ $n^{th} \text{ Overtone} = (n+1)^{th} \text{ Harmonic}$