CONCEPT: SOLVING RESISTOR CIRCUITS

• In Circuit problems, you will need to find the CURRENT and VOLTAGE of different Resistors.

SERIES CONNECTION	PARALLEL CONNECTION
- Equivalent Resistance: $oldsymbol{R_{eq}=R_1+R_2+R_3}$	- Equivalent Resistance: $1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3$
- Share [CURRENT / VOLTAGE] with EACH OTHER - Share [CURRENT / VOLTAGE] with EQUIVALENT Resistor	- Share [CURRENT / VOLTAGE] with EACH OTHER - Share [CURRENT / VOLTAGE] with EQUIVALENT Resistor
————————————————————————————————	*

- STEPS for Solving Resistor Circuits:
 - 1) "Collapse" down to ONE EQUIVALENT Resistor
 - 2) Find VOLTAGE and CURRENT on Equivalent Resistor
 - 3) "Work backwards" noting VOLTAGE and CURRENT on EACH Resistor

EXAMPLE: What is the current and voltage of each of the resistors in the following circuit?

PRACTICE: FIND CURRENT & VOLTAGE IN ALL RESISTORS

What is current and voltage across each resistor below?

EXAMPLE: FIND CURRENT OF ONE CAPACITOR

What is the current on the 3 Ω resistor below?

PRACTICE: FIND VOLTAGE OF THE BATTERY

What is the voltage of the battery below?

