CONCEPT: DRIFT VELOCITY & CONDUCTIVITY

The speed of electrons through conductors is called the ______ velocity

$$\rightarrow$$
 $v_d =$

- e is elementary charge
- m is mass of electron (9.11×10⁻³¹ kg)
- E is Electric Field strength
- au is the average time between collisions, called MEAN FREE TIME

• CURRENT can be calculated as
$$\rightarrow I = e * n * A * v_d =$$

- n is FREE Electron Density (# of FREE electrons/m³)
- Current DENSITY becomes: $\rightarrow J = \frac{I}{A} =$

EXAMPLE: A conductor has 1×10²⁰ electrons per cubic meter, 1% of which are free electrons. If the electric field in the conductor is 5000N/C, and the mean free time is 5µs, what is the current density in the conductor?

RESISTIVITY of a conductor can be calculated as

$$\rightarrow \qquad \rho = \frac{m}{ne^2\tau}$$

- CONDUCTIVITY of a conductor can be calculated as

$$\sigma = =$$

EXAMPLE: Copper has a conductivity of $5.8 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$. If the density of free electrons in a copper conductor is 5×10^{17} , what is the mean free time for the free electrons?