CONCEPT: CALCULATING DOT PRODUCT USING VECTOR COMPONENTS

- You'll need to calculate the dot product $\vec{A} \bullet \vec{B}$ of vectors using <u>unit vector components</u> instead of magnitudes & angles.
 - Remember: Dot Product is the multiplication of parallel components, and always results in a number!

DOT PRODUCT USING MAG. + ANGLES

$$\vec{A} \bullet \vec{B} = |A| |B| \cos \theta$$

DOT PRODUCT USING COMPONENTS

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

$$\vec{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

$$\overrightarrow{A} \bullet \overrightarrow{B} = \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$$

EXAMPLE: Calculate $\vec{A} \bullet \vec{B}$ for each of the following:

a)
$$\vec{A} = 2\hat{\imath} + 3\hat{\jmath}$$

 $\vec{B} = \hat{\imath} + 2\hat{\jmath}$

b)
$$\vec{A} = -3\hat{\imath} + \hat{\jmath} + 4\hat{k}$$

 $\vec{B} = \hat{\imath} - 2\hat{\jmath}$

 $\underline{\mathsf{PRACTICE}} \text{: Calculate the dot product between } \overrightarrow{A} = (6.6\ \hat{\imath} - \ 3.4\ \hat{\jmath} - \ 6.4\ \hat{k}) \text{ and } \overrightarrow{B} = (8.6\ \hat{\imath} + \ 2.6\ \hat{\jmath} - \ 5.8\ \hat{k}).$

Magnitude & Direction

Unit Vector Components

$$\vec{A} \bullet \vec{B} = |A| |B| \cos\theta$$

$$\vec{A} \bullet \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

EXAMPLE: Vector $\vec{A} = 7.2\hat{\imath} - 3.9\hat{\jmath}$ and $\vec{B} = 2.1\hat{\imath} + 4.8\hat{\jmath}$. (a) Calculate $\vec{A} \bullet \vec{B}$. (b) What is the angle between $\vec{A} \& \vec{B}$?

Magnitude & Direction

Unit Vector Components

$$\vec{A} \bullet \vec{B} = |A| |B| \cos \theta$$

$$\vec{A} \bullet \vec{B} = A_x B_x + A_y B_y + A_z B_z$$