CONCEPT: IDEAL GASES AND THE IDEAL GAS LAW

- Ideal Gas = A simplified, "perfect" gas that satisfies the following conditions:
 - 1) The gas has a <u>low</u> _____, i.e. particles very spread out (low pressure, high temperature)
 - 2) There are <u>no</u> _____ between the gas particles
 - 3) Particles have <u>zero</u> _____, so we can treat them as points
 - **4)** Particles move in straight lines and <u>collide</u> _____ (energy is conserved)
 - Under everyday conditions, most real gases already behave very much like ideal gases.

I must be in K

• "STP" (Standard Temperature & Pressure) is a common set of conditions defined as T=0°C=273K, P=1atm=1.01×105Pa

EXAMPLE: What is the volume that exactly 1 mole of an ideal gas occupies at STP?

Volume Conversions

1 cm³ = 1 mL
1 m³ = 1000 L

• 1 mole of ANY ideal gas at STP has a volume of exactly _____. This is sometimes called "Molar Volume at STP"

<u>PROBLEM</u>: 3 moles of an ideal gas fill a cubical box with a side length of 30cm. If the temperature of the gas is 20°C, what is the pressure inside the container?

- **A)** 2.7×10⁵ Pa
- **B)** 0.27 Pa
- C) 1.85×10⁴ Pa
- **D)** 8.12×10³ Pa

IDEAL GAS EQs & Constants

$$PV = nRT = Nk_BT$$

$$R = 8.314 \frac{J}{mol \cdot K}$$

$$k = 1.38 \times 10^{-23} \frac{J}{J}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{K}$$

$$N_A = 6.02 \times 10^{23} \frac{\text{particles}}{\text{mol}}$$

<u>PROBLEM</u>: Hydrogen gas behaves very much like an ideal gas. If you have a sample of Hydrogen gas with a volume of 1000 cm³ at 30°C with a pressure of 1×10⁵ Pa, calculate how many hydrogen atoms (particles) there are in the sample.

- **A)** 2.42×10²²
- **B)** 2.39×10²²
- C) 2.39×10²⁸

IDEAL GAS EQs & Constants

$$PV = nRT = Nk_BT$$

$$R = 8.314 \frac{J}{mol \cdot K}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{K}$$

$$N_A = 6.02 \times 10^{23} \frac{R_{\text{particles}}}{\text{mol}}$$

CONCEPT: SOLVING IDEAL GAS PROBLEMS WITH CHANGING STATES

- In some ideal gas problems, you'll have to compare an initial & final "state" of a gas.
 - In *most* of these problems, ____ of the 4 variables remain constant.

EXAMPLE: You fill an insulated container with 2 moles of an ideal gas such that no gas can leak out. The container is then compressed with a piston at constant temperature. The initial pressure is 1×10⁵ Pa. If the initial volume is 0.05m³ and the gas is compressed to 0.01m³, calculate the final pressure.

IDEAL GAS LAW

- 1) Write $\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f}$
- 2) Cancel out "constant" variables
- 3) Solve for Target

• There are 3 "special cases" of the ideal gas law (historically called **The Gas Laws**) where *n* & another variable are fixed.

If T constant, P is inversely proportional to V. - Boyle's Law:

$$\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f} \Rightarrow$$

$$\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f} \Rightarrow \frac{P_i V_i}{n_f T_f} = \text{constant} = \frac{P_f V_f}{n_f T_f}$$

- Charles's Law: If **P** constant, **V** is directly proportional to **T**.

$$\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f} =$$

$$\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f} \Rightarrow \frac{V_i}{T_i} = \text{constant} = \frac{V_f}{T_f}$$

- Gay-Lussac's Law: If V constant, P is directly proportional to T.

$$\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f} =$$

$$\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f} \Rightarrow \frac{\frac{P_i}{T_i} = \text{constant} = \frac{P_f}{T_f}}{\frac{P_i}{T_i}} = \frac{P_f V_f}{P_f}$$

PROBLEM: A balloon contains 3900cm³ of a gas at a pressure of 101 kPa and temperature of –9°C. If the balloon is warmed such that the temperature rises to 28°C, what volume will the gas occupy? Assume the pressure remains constant.

- **A)** 0.012 m³
- **B)** 0.0041 m³
- **C)** 0.39 m^3
- **D)** 0.0044 m³

IDEAL GAS LAW PROBLEMS

- 1) Write $\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f}$
- 2) Cancel out "constant" variables
- 3) Solve for Target

IDEAL GAS EQs & Constants

$$PV = nRT = Nk_BT$$

$$R = 8.314 \frac{J}{mol \cdot K} = 0.08206 \frac{L \cdot atm}{mol \cdot K}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{K}$$

$$N_A = 6.02 \times 10^{23} \frac{R}{\text{particles}}$$

PROBLEM: An ideal gas in a sealed container with a volume of 2.8 L, pressure of 0.15 atm and a temperature of 40°C is warmed until the pressure and volume both double. a) What is the final temperature? b) How many moles of gas are there?

IDEAL GAS LAW PROBLEMS

1) Write
$$\frac{P_i V_i}{n_i T_i} = \frac{P_f V_f}{n_f T_f}$$

- 2) Cancel out "constant" variables
- 3) Solve for Target

IDEAL GAS EQs & Constants

$$PV = nRT = Nk_RT$$

$$R = 8.314 \frac{J}{mol \cdot K} = 0.08206 \frac{L \cdot atm}{mol \cdot K}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{L}$$

$$k_B = 1.38 \times 10^{-23} \frac{J}{K}$$
 $N_A = 6.02 \times 10^{23} \frac{\text{particles}}{\text{mol}}$

• You may be given volume units of *L* and pressure units of *atm*. Useful conversions to know:

 $1 L = 0.001 m^3$

1 atm = 1.01×10⁵ Pa