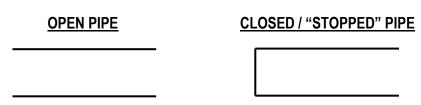
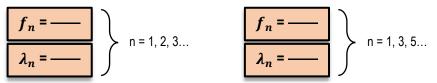

CONCEPT: STANDING SOUND WAVES

• Longitudinal & Transverse Standing Waves are very similar. Best example: Sound waves in an open or closed pipe.


TRANSVERSE STANDING WAVE


• Both ends are [Nodes | Antinodes]

- Both ends are [Open | Closed]
- Both ends are [Nodes | Antinodes]
- 1 end is open, other end [Open | Closed]
- Open end is Antinode, closed end [Node | Antinode]

• For sound waves, always assume the speed of sound v = 343 m/s unless otherwise stated.

<u>EXAMPLE</u>: For a particular musical instrument, the pipe which sound travels through is 5m long. **a)** Calculate the fundamental frequency if the pipe is open at both ends. **b)** Calculate the 4rd overtone if the pipe is open at 1end, closed at the other.

<u>PROBLEM</u>: The fundamental frequency of your *closed* organ pipe is 200 Hz. The second overtone of this pipe has the same frequency as the 3rd harmonic of an *open* pipe. What is the length of this open pipe?

- **A)** 0.85 m
- **B)** 0.51 m
- **C)** 0.69 m
- **D)** 0.43 m

STANDING WAVES

$$v = \sqrt{\frac{F_T}{\mu}} \text{ (for strings only)}$$

$$f_1 = \frac{v}{2L}$$

$$f_n = nf_1 = \frac{nv}{2L} \text{ (open pipe)}$$

$$\lambda_n = \frac{2L}{n} \text{ (open pipe)}$$

$$f_n = nf_1 = \frac{nv}{4L} \text{ (closed pipe)}$$

$$\lambda_n = \frac{4L}{n} \text{ (closed pipe)}$$

nth Overtone = (n+1)th Harmonic

<u>PROBLEM</u>: The length of the closed pipe shown below is 2.75 m long. a) Calculate the frequency of the standing wave shown. b) Calculate the fundamental frequency of the pipe.

STANDING WAVES

$$v = \sqrt{\frac{F_T}{\mu}}$$
 (for strings only)
 $f_1 = \frac{v}{2L}$
 $f_n = nf_1 = \frac{nv}{2L}$ (open pipe)
 $\lambda_n = \frac{2L}{n}$ (open pipe)
 $f_n = nf_1 = \frac{nv}{4L}$ (closed pipe)
 $\lambda_n = \frac{4L}{n}$ (closed pipe)
 n^{th} Overtone = $(n+1)^{th}$ Harmonic