CONCEPT: Gravitational Potential Energy in a System of Masses

- To find total Grav. Potential Energy in a system of masses, simply add energies for
 - We can do this because energies are: [SCALARS | VECTORS]

 $\Sigma U_G =$ _____

(depends on # of masses)

EXAMPLE: Calculate the total gravitational potential energy in the equilateral triangle system of masses below.

PRACTICE: What is the total gravitational potential energy of this system of masses?

EXAMPLE: a) What is the gravitational potential energy of the system? b) The two 25-kg masses are fixed and cannot move. If the 10-kg mass is released from rest, what will be its speed when it is directly between the two 25-kg masses?

EQUATIONS	CONSTANTS
$F_G = \frac{Gm_1m_2}{r^2} r = R + h$	$G = 6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$
$U_{G} = -\frac{GMm}{r}$	
$\mathbf{K_i} + \mathbf{U_i} + \mathbf{W_{NC}} = \mathbf{K_f} + \mathbf{U_f}$	