CONCEPT: LIGHT REFRACTION & SNELL'S LAW

- Refraction: Whenever light enters a new material at an angle, it changes _____ and ____.
 - When light hits the boundary between 2 materials, some of it reflects and some of it refracts into the new material.

- Always make sure to use ____ & ___ for incident light!

Entering material with HIGHER n ($n_2 > n_1$)

<u>EXAMPLE 1</u>: A ray of light enters water at a 30° incident angle. Find the angle of refraction.

Entering material with LOWER n ($n_2 \le n_1$)

<u>EXAMPLE 2</u>: A ray of light exits glass into air at a 30° incident angle. Find the angle of refraction.

n FOR COMMON MATERIALS		
Air	1.00029 ≈ 1	
Water	1.33	
Glass	1.46	

Light bends **[TOWARD | AWAY FROM]** normal, θ_2 θ_1

Light bends [TOWARD | AWAY FROM] normal, θ_2 θ_1

<u>PROBLEM</u>: A laser pointer emits a ray which enters a quartz crystal at an angle 50° with the normal to the surface of the crystal. The ray bends inside the crystal, making an angle of 30° with the normal. Find the index of refraction of quartz.

INDEX OF REFRACTION FOR COMMON MATERIALS		
Vacuum/Air	1	
Water	1.33	
Glass	1.46	

OPTICS EQUATIONS	
$n_1 sin\theta_1 = n_2 sin\theta_2$	

<u>PROBLEM</u>: A ray of light is incident on a block of glass with an angle of 70° in the middle of the block (length = 7.5cm). What is the distance (in cm) below the top of the block at which the light ray exits?

INDEX OF REFRACTION FOR COMMON MATERIALS			
Vacuum/Air	1		
Water	1.33		
Glass	1.46		

OPTICS EQUATIONS $n_1 sin\theta_1 = n_2 sin\theta_2$

<u>PROBLEM</u>: A ray of light is incident on a glass pane with an angle of 60°. The light partially reflects and partially refracts. What is the angle θ between the reflected and refracted rays?

INDEX OF REFRACTION FOR COMMON MATERIALS		
Vacuum/Air	1	
Water	1.33	
Glass	1.46	

OPTICS EQUATIONS	
$\theta_1 = \theta_1'$	_
$n_1 sin\theta_1 = n_2 sin\theta_2$	