

CONCEPT: UNIT VECTORS

• Vectors are sometimes represented using a special notation called **Unit Vectors**.

• Unit vectors make vector addition very straightforward:

EXAMPLE: Vector $\vec{A} = 4\hat{\imath} + 2\hat{\jmath}$ and $\vec{B} = -\hat{\imath} + 2\hat{\jmath}$. Draw the vectors and calculate $\vec{R} = \vec{A} + \vec{B}$ in unit vector form.

Vector Addition w/ Unit Vectors
$\vec{A} = A_{x}\hat{\imath} + A_{y}\hat{\jmath} = \underline{\qquad}$ $\vec{B} = B_{x}\hat{\imath} + B_{y}\hat{\jmath} = \underline{\qquad}$
$\vec{R} = \vec{A} + \vec{B} = \underline{\hspace{1cm}}$

 $\underline{\mathsf{PRACTICE}} \colon \overrightarrow{\mathbf{A}} = (4.0 \text{ m}) \widehat{\mathbf{\imath}} + (3.0 \text{ m}) \widehat{\mathbf{\jmath}} \text{ and } \overrightarrow{\mathbf{B}} = (-13.0 \text{ m}) \widehat{\mathbf{\imath}} + (7.0 \text{ m}) \widehat{\mathbf{\jmath}}. \text{ You add them together to produce another vector } \overrightarrow{\mathbf{C}}.$

(a) Express this new vector \vec{c} in unit-vector notation. (b) What are the magnitude and direction of \vec{c} ?

 $\underline{\mathsf{EXAMPLE}}\text{: Consider the three displacement vectors } \overrightarrow{\mathbf{A}} = (3\ \hat{\mathbf{i}} - 3\ \hat{\mathbf{j}})\ \mathsf{m}, \ \overrightarrow{\mathbf{B}} = (\mathbf{\hat{i}} - 4\ \hat{\mathbf{j}})\ \mathsf{m}, \ \mathsf{and}\ \overrightarrow{\mathbf{C}} = (-2\ \hat{\mathbf{i}} + 5\ \hat{\mathbf{j}})\ \mathsf{m}.$

(a) Find the magnitude and direction of D = A + B + C.

(b) Find the magnitude and direction of E = -A - B + C.