CONCEPT: 2D FORCES IN HORIZONTAL PLANE EXAMPLE: A 5kg block on a circular tabletop is pulled by 2 horizontal forces. If F_1 = 2N along +x-axis and F_2 = 5N at 37°, find (a) \vec{F}_{net} , (b) a_x , (c) a_y , (d) a. - 1) Draw FBD: **W**,**F**_A,**T**,**N**,*f* - 2) Decompose 2D Forces - 3) Write $\Sigma F = ma$ in x & y - 4) Solve | | x | у | |--|---|---| | \overrightarrow{F}_1 | | | | \overrightarrow{F}_2 | | | | $\vec{F}_{net} = \underline{\hspace{1cm}}$ | | | - IF applied forces act only in the horizontal plane, N = ____ - ΣF_{vert} = 0 (in the side view), so vertical forces (weight, Normal) aren't important. - Because Forces = vectors, when a Force acts at an angle in 2D, we must ______ it into its **x** & **y** components. - If multiple forces acting, F_{net} is always calculated using ______. <u>PROBLEM</u>: Three horizontal forces act on a box (mass = 8 kg) sitting on a smooth surface. F_1 is 30 N acting at 53° counterclockwise from the +x axis, F_2 is 13 N acting at 67.4° clockwise from the +x axis, and F_3 is 20 N directly along the -x axis. What are the magnitude and direction of the box's acceleration? - **A)** 1.5 m/s^2 , $14^\circ \text{ ccw from +x-axis}$ - B) 1.5 m/s^2 , 76° ccw from +x-axis - **C)** 6.9 m/s^2 , $1.1^{\circ} \text{ cw from -x-axis}$ - **D)** 6.9 m/s^2 , 0.46° cw from -x-axis - 1) Draw FBD - 2) Write $\Sigma F = ma$ in x & y - 3) Solve ### **CONCEPT: SOLVING AN UNKNOWN 2D FORCE** - In some problems, you'll have to solve for a Force without knowing its magnitude **OR** direction from the problem. - When expanding **ΣF=ma** in X&Y, assume the components of unknown forces are _____. <u>EXAMPLE</u>: Three horizontal forces pull a 40kg block. $F_1 = 100N$ at 60° above the +x-axis, $F_2 = 70N$ along the -y axis. Find the magnitude of the third force required so that the block accelerates at $2m/s^2$ <u>only</u> along the x-axis. - 1) Draw FBD: W,FA,T,N,f - 2) Decompose 2D Forces - 3) Write $\Sigma F = ma$ in x & y - 4) Solve #### **CONCEPT: 2D FORCES IN HORIZONTAL & VERTICAL PLANES** <u>EXAMPLE</u>: A 5.1kg block on the floor is pulled by a 10N force 37° above the horizontal. Assuming no friction, find **(a)** the Normal force on the block; **(b)** the block's acceleration. - **1)** Draw FBD: **W**,**F**_A,**T**,**N**,*f* - 2) Decompose 2D Forces - 3) Write $\Sigma F = ma$ in x & y - 4) Solve - IF applied forces act partially/completely vertically, then N _____. - In most problems, $F_{up} < F_{down}$, so the object is in equilibrium in the y-axis: $\Sigma F_y = 0 \Leftrightarrow a_y = 0$ <u>PROBLEM</u>: You push a 5.1kg cart along the floor with an unknown force **F** at 30° below the horizontal. Using a scale, you know the Normal force is 70N. What is the horizontal acceleration of the cart? - **A)** 7.84 m/s² - **B)** 3.92 m/s² - **C)** 6.79 m/s² - **D)** 2.26 m/s² - 1) Draw FBD: W,FA,T,N,f - 2) Decompose 2D Forces - 3) Write $\Sigma F = ma$ in x & y - 4) Solve <u>PROBLEM</u>: You drop a 2-kg box straight down from the top of a building. A steady horizontal wind exerts a constant force of 3 N on the box as it falls. (Ignore other air resistance.) What is the direction of the box's acceleration? - A) 1.4° below horizontal - B) 8.7° below horizontal - C) 81° below horizontal - **D)** 33° below horizontal - E) Not enough information to tell - 1) Draw FBD - 2) Write $\Sigma F = ma$ in x & y - 3) Solve