CONCEPT: 2D FORCES IN HORIZONTAL PLANE

EXAMPLE: A 5kg block on a circular tabletop is pulled by 2 horizontal forces. If F_1 = 2N along +x-axis and F_2 = 5N at 37°,

find (a) \vec{F}_{net} , (b) a_x , (c) a_y , (d) a.

- 1) Draw FBD: **W**,**F**_A,**T**,**N**,*f*
- 2) Decompose 2D Forces
- 3) Write $\Sigma F = ma$ in x & y
- 4) Solve

	x	у
\overrightarrow{F}_1		
\overrightarrow{F}_2		
$\vec{F}_{net} = \underline{\hspace{1cm}}$		

- IF applied forces act only in the horizontal plane, N = ____
 - ΣF_{vert} = 0 (in the side view), so vertical forces (weight, Normal) aren't important.
- Because Forces = vectors, when a Force acts at an angle in 2D, we must ______ it into its **x** & **y** components.
 - If multiple forces acting, F_{net} is always calculated using ______.

<u>PROBLEM</u>: Three horizontal forces act on a box (mass = 8 kg) sitting on a smooth surface. F_1 is 30 N acting at 53° counterclockwise from the +x axis, F_2 is 13 N acting at 67.4° clockwise from the +x axis, and F_3 is 20 N directly along the -x axis. What are the magnitude and direction of the box's acceleration?

- **A)** 1.5 m/s^2 , $14^\circ \text{ ccw from +x-axis}$
- B) 1.5 m/s^2 , 76° ccw from +x-axis
- **C)** 6.9 m/s^2 , $1.1^{\circ} \text{ cw from -x-axis}$
- **D)** 6.9 m/s^2 , 0.46° cw from -x-axis

- 1) Draw FBD
- 2) Write $\Sigma F = ma$ in x & y
- 3) Solve

CONCEPT: SOLVING AN UNKNOWN 2D FORCE

- In some problems, you'll have to solve for a Force without knowing its magnitude **OR** direction from the problem.
 - When expanding **ΣF=ma** in X&Y, assume the components of unknown forces are _____.

<u>EXAMPLE</u>: Three horizontal forces pull a 40kg block. $F_1 = 100N$ at 60° above the +x-axis, $F_2 = 70N$ along the -y axis. Find the magnitude of the third force required so that the block accelerates at $2m/s^2$ <u>only</u> along the x-axis.

- 1) Draw FBD: W,FA,T,N,f
- 2) Decompose 2D Forces
- 3) Write $\Sigma F = ma$ in x & y
- 4) Solve

CONCEPT: 2D FORCES IN HORIZONTAL & VERTICAL PLANES

<u>EXAMPLE</u>: A 5.1kg block on the floor is pulled by a 10N force 37° above the horizontal. Assuming no friction, find **(a)** the Normal force on the block; **(b)** the block's acceleration.

- **1)** Draw FBD: **W**,**F**_A,**T**,**N**,*f*
- 2) Decompose 2D Forces
- 3) Write $\Sigma F = ma$ in x & y
- 4) Solve

- IF applied forces act partially/completely vertically, then N _____.
 - In most problems, $F_{up} < F_{down}$, so the object is in equilibrium in the y-axis: $\Sigma F_y = 0 \Leftrightarrow a_y = 0$

<u>PROBLEM</u>: You push a 5.1kg cart along the floor with an unknown force **F** at 30° below the horizontal. Using a scale, you know the Normal force is 70N. What is the horizontal acceleration of the cart?

- **A)** 7.84 m/s²
- **B)** 3.92 m/s²
- **C)** 6.79 m/s²
- **D)** 2.26 m/s²

- 1) Draw FBD: W,FA,T,N,f
- 2) Decompose 2D Forces
- 3) Write $\Sigma F = ma$ in x & y
- 4) Solve

<u>PROBLEM</u>: You drop a 2-kg box straight down from the top of a building. A steady horizontal wind exerts a constant force of 3 N on the box as it falls. (Ignore other air resistance.) What is the direction of the box's acceleration?

- A) 1.4° below horizontal
- B) 8.7° below horizontal
- C) 81° below horizontal
- **D)** 33° below horizontal
- E) Not enough information to tell

- 1) Draw FBD
- 2) Write $\Sigma F = ma$ in x & y
- 3) Solve