

CONCEPT: VECTOR ADDITION BY COMPONENTS

• You'll need to add vectors together and calculate the magnitude & direction of the resultant without counting squares.

<u>EXAMPLE</u>: You walk 5m at 53° above the +x-axis, then 8m at 30° above the +x-axis. Calculate the magnitude & direction of your total displacement.

EXAMPLE: Vector \vec{A} has a magnitude of 10m at a direction 40° above the +x-axis. \vec{B} has magnitude 3 at a direction 20° above the x-axis. Calculate the magnitude and direction of $\vec{R} = \vec{A} - 2\vec{B}$.

VECTOR ADDITION

- 1) Draw & connect vectors tip-to-tail
- 2) Draw Resultant & components
- 3) Calculate ALL X&Y components
- **4)** Combine X & Y components according to R equation
- 5) Calculate R and θ_R

Vector	Vector
Composition	Decomposition
(Components→Vector)	(Vector→Components)
$R = \sqrt{R_x^2 + R_y^2}$	$A_{x} = A \cos(\theta_{X})$
$\theta_X = \tan^{-1}\left(\frac{R_y}{R_x}\right)$	$A_{y} = A \sin(\theta_{X})$