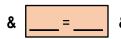
CONCEPT: SOLVING SYMMETRICAL LAUNCH PROBLEMS

- If an object is launched *upwards*, v_{0y} is always [**POSITIVE** | **NEGATIVE**]
 - The maximum height or peak is <u>always</u> a point of interest, because $v_{(peak),y} = \underline{\hspace{1cm}}$
- If an object returns to the _____ from which it was launched (___ = ___), its trajectory is **symmetrical**.
 - For symmetrical launches <u>ONLY</u>:

	1
=	ı
	 ı



<u>EXAMPLE</u>: You kick a football at 20m/s angled 53° upward, and it later returns to the ground. Calculate **a)** the time the football takes to reach its max height; **b)** the total time of flight; **c)** the vertical component of the football's velocity when it returns to the ground.

PROJECTILE MOTION

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		VECTOR EQs
Χ	Υ	$\vec{A}_{ \blacksquare}$
$\Delta x = v_x t$	(1) $v_y = v_{0y} + a_y t$ (2) $v_y^2 = v_{0y}^2 + 2a_y \Delta y$ (3) $\Delta y = v_{0y} t + \frac{1}{2} a_y t^2$ *(4) $\Delta y = \frac{1}{2} (v_{0y} + v_f) t$	$A = \sqrt{A_x^2 + A_y^2}$
		$\theta_x = \tan^{-1} \left(\frac{ A_y }{ A_x } \right)$ $A_x = A \cos(\theta_x)$ $A_y = A \sin(\theta_x)$

<u>PROBLEM</u>: A flare gun launches signal flares with an initial speed of 110 m/s. How far does the flare travel if it is shot at ground level at an angle 65° above the horizontal?

- **A)** 1890 m
- **B)** 944 m
- **C)** 507 m
- **D)** 1040 m

PROJECTILE MOTION

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		
Χ	Υ	
$\Delta x = v_x t$	(1) $v_y = v_{0y} + a_y t$ (2) $v_y^2 = v_{0y}^2 + 2a_y \Delta y$ (3) $\Delta y = v_{0y} t + \frac{1}{2} a_y t^2$ *(4) $\Delta y = \frac{1}{2} (v_{0y} + v_f) t$	

VECTOR EQS
A_{x} A_{x}
$A = \sqrt{A_x^2 + A_y^2}$
$\theta_x = \tan^{-1}\left(\frac{ A_y }{ A_x }\right)$
$A_x = A \cos(\theta_x)$
$A_{v} = A \sin(\theta_{x})$

<u>PROBLEM</u>: In a game of catch on a faraway planet, a ball is thrown with 10 m/s at 37° above the horizontal. It travels a horizontal distance of 32 m and lands on the ground. What is the magnitude of the gravitational acceleration on this planet?

- **A)** 0.3 m/s^2
- **B)** 1.5 m/s²
- **C)** 3 m/s^2
- **D)** 6 m/s^2

PROJECTILE MOTION

- 1) Draw paths in X&Y and points of interest (Points of Interest: initial, final, max height, etc.)
- 2) Determine target variable
- 3) Determine interval and UAM equation
- 4) Solve

UAM EQUATIONS		
Х	Υ	
$\Delta x = v_x t$	(1) $v_y = v_{0y} + a_y t$ (2) $v_y^2 = v_{0y}^2 + 2a_y \Delta y$ (3) $\Delta y = v_{0y} t + \frac{1}{2} a_y t^2$ *(4) $\Delta y = \frac{1}{2} (v_{0y} + v_f) t$	

VECTOR EQS	
A_y A_y A_x	
$A = \sqrt{{A_x}^2 + {A_y}^2}$	
$\theta_x = \tan^{-1} \left(\frac{ A_y }{ A_x } \right)$	
$A_x = A \cos(\theta_x)$	
$A_y = A \sin(\theta_x)$	